Welcome to kwcoco’s documentation!¶
If you are new, please see our getting started document: getting_started
Please also see information in the repo README, which contains similar but complementary information.
For notes about warping and spaces see warping_and_spaces.
The Kitware COCO module defines a variant of the Microsoft COCO format, originally developed for the “collected images in context” object detection challenge. We are backwards compatible with the original module, but we also have improved implementations in several places, including segmentations, keypoints, annotation tracks, multi-spectral images, and videos (which represents a generic sequence of images).
A kwcoco file is a “manifest” that serves as a single reference that points to all images, categories, and annotations in a computer vision dataset. Thus, when applying an algorithm to a dataset, it is sufficient to have the algorithm take one dataset parameter: the path to the kwcoco file. Generally a kwcoco file will live in a “bundle” directory along with the data that it references, and paths in the kwcoco file will be relative to the location of the kwcoco file itself.
The main data structure in this model is largely based on the implementation in https://github.com/cocodataset/cocoapi It uses the same efficient core indexing data structures, but in our implementation the indexing can be optionally turned off, functions are silent by default (with the exception of long running processes, which optionally show progress by default). We support helper functions that add and remove images, categories, and annotations.
The kwcoco.CocoDataset
class is capable of dynamic addition and removal
of categories, images, and annotations. Has better support for keypoints and
segmentation formats than the original COCO format. Despite being written in
Python, this data structure is reasonably efficient.
>>> import kwcoco
>>> import json
>>> # Create demo data
>>> demo = kwcoco.CocoDataset.demo()
>>> # Reroot can switch between absolute / relative-paths
>>> demo.reroot(absolute=True)
>>> # could also use demo.dump / demo.dumps, but this is more explicit
>>> text = json.dumps(demo.dataset)
>>> with open('demo.json', 'w') as file:
>>> file.write(text)
>>> # Read from disk
>>> self = kwcoco.CocoDataset('demo.json')
>>> # Add data
>>> cid = self.add_category('Cat')
>>> gid = self.add_image('new-img.jpg')
>>> aid = self.add_annotation(image_id=gid, category_id=cid, bbox=[0, 0, 100, 100])
>>> # Remove data
>>> self.remove_annotations([aid])
>>> self.remove_images([gid])
>>> self.remove_categories([cid])
>>> # Look at data
>>> import ubelt as ub
>>> print(ub.repr2(self.basic_stats(), nl=1))
>>> print(ub.repr2(self.extended_stats(), nl=2))
>>> print(ub.repr2(self.boxsize_stats(), nl=3))
>>> print(ub.repr2(self.category_annotation_frequency()))
>>> # Inspect data
>>> # xdoctest: +REQUIRES(module:kwplot)
>>> import kwplot
>>> kwplot.autompl()
>>> self.show_image(gid=1)
>>> # Access single-item data via imgs, cats, anns
>>> cid = 1
>>> self.cats[cid]
{'id': 1, 'name': 'astronaut', 'supercategory': 'human'}
>>> gid = 1
>>> self.imgs[gid]
{'id': 1, 'file_name': '...astro.png', 'url': 'https://i.imgur.com/KXhKM72.png'}
>>> aid = 3
>>> self.anns[aid]
{'id': 3, 'image_id': 1, 'category_id': 3, 'line': [326, 369, 500, 500]}
>>> # Access multi-item data via the annots and images helper objects
>>> aids = self.index.gid_to_aids[2]
>>> annots = self.annots(aids)
>>> print('annots = {}'.format(ub.repr2(annots, nl=1, sv=1)))
annots = <Annots(num=2)>
>>> annots.lookup('category_id')
[6, 4]
>>> annots.lookup('bbox')
[[37, 6, 230, 240], [124, 96, 45, 18]]
>>> # built in conversions to efficient kwimage array DataStructures
>>> print(ub.repr2(annots.detections.data, sv=1))
{
'boxes': <Boxes(xywh,
array([[ 37., 6., 230., 240.],
[124., 96., 45., 18.]], dtype=float32))>,
'class_idxs': [5, 3],
'keypoints': <PointsList(n=2)>,
'segmentations': <PolygonList(n=2)>,
}
>>> gids = list(self.imgs.keys())
>>> images = self.images(gids)
>>> print('images = {}'.format(ub.repr2(images, nl=1, sv=1)))
images = <Images(num=3)>
>>> images.lookup('file_name')
['...astro.png', '...carl.png', '...stars.png']
>>> print('images.annots = {}'.format(images.annots))
images.annots = <AnnotGroups(n=3, m=3.7, s=3.9)>
>>> print('images.annots.cids = {!r}'.format(images.annots.cids))
images.annots.cids = [[1, 2, 3, 4, 5, 5, 5, 5, 5], [6, 4], []]
CocoDataset API¶
The following is a logical grouping of the public kwcoco.CocoDataset API attributes and methods. See the in-code documentation for further details.
CocoDataset classmethods (via MixinCocoExtras)¶
kwcoco.CocoDataset.coerce
- Attempt to transform the input into the intended CocoDataset.
kwcoco.CocoDataset.demo
- Create a toy coco dataset for testing and demo puposes
kwcoco.CocoDataset.random
- Creates a random CocoDataset according to distribution parameters
CocoDataset classmethods (via CocoDataset)¶
kwcoco.CocoDataset.from_coco_paths
- Constructor from multiple coco file paths.
kwcoco.CocoDataset.from_data
- Constructor from a json dictionary
kwcoco.CocoDataset.from_image_paths
- Constructor from a list of images paths.
CocoDataset slots¶
kwcoco.CocoDataset.index
- an efficient lookup index into the coco data structure. The index defines its own attributes likeanns
,cats
,imgs
,gid_to_aids
,file_name_to_img
, etc. SeeCocoIndex
for more details on which attributes are available.
kwcoco.CocoDataset.hashid
- If computed, this will be a hash uniquely identifing the dataset. To ensure this is computed seekwcoco.coco_dataset.MixinCocoExtras._build_hashid()
.
kwcoco.CocoDataset.hashid_parts
-
kwcoco.CocoDataset.tag
- A tag indicating the name of the dataset.
kwcoco.CocoDataset.dataset
- raw json data structure. This is the base dictionary that contains {‘annotations’: List, ‘images’: List, ‘categories’: List}
kwcoco.CocoDataset.bundle_dpath
- If known, this is the root path that all image file names are relative to. This can also be manually overwritten by the user.
kwcoco.CocoDataset.assets_dpath
-
kwcoco.CocoDataset.cache_dpath
-
CocoDataset properties¶
kwcoco.CocoDataset.anns
-
kwcoco.CocoDataset.cats
-
kwcoco.CocoDataset.cid_to_aids
-
kwcoco.CocoDataset.data_fpath
-
kwcoco.CocoDataset.data_root
-
kwcoco.CocoDataset.fpath
- if known, this stores the filepath the dataset was loaded from
kwcoco.CocoDataset.gid_to_aids
-
kwcoco.CocoDataset.img_root
-
kwcoco.CocoDataset.imgs
-
kwcoco.CocoDataset.n_annots
-
kwcoco.CocoDataset.n_cats
-
kwcoco.CocoDataset.n_images
-
kwcoco.CocoDataset.n_videos
-
kwcoco.CocoDataset.name_to_cat
-
CocoDataset methods (via MixinCocoAddRemove)¶
kwcoco.CocoDataset.add_annotation
- Add an annotation to the dataset (dynamically updates the index)
kwcoco.CocoDataset.add_annotations
- Faster less-safe multi-item alternative to add_annotation.
kwcoco.CocoDataset.add_category
- Adds a category
kwcoco.CocoDataset.add_image
- Add an image to the dataset (dynamically updates the index)
kwcoco.CocoDataset.add_images
- Faster less-safe multi-item alternative
kwcoco.CocoDataset.add_video
- Add a video to the dataset (dynamically updates the index)
kwcoco.CocoDataset.clear_annotations
- Removes all annotations (but not images and categories)
kwcoco.CocoDataset.clear_images
- Removes all images and annotations (but not categories)
kwcoco.CocoDataset.ensure_category
- Likeadd_category()
, but returns the existing category id if it already exists instead of failing. In this case all metadata is ignored.
kwcoco.CocoDataset.ensure_image
- Likeadd_image()
,, but returns the existing image id if it already exists instead of failing. In this case all metadata is ignored.
kwcoco.CocoDataset.remove_annotation
- Remove a single annotation from the dataset
kwcoco.CocoDataset.remove_annotation_keypoints
- Removes all keypoints with a particular category
kwcoco.CocoDataset.remove_annotations
- Remove multiple annotations from the dataset.
kwcoco.CocoDataset.remove_categories
- Remove categories and all annotations in those categories. Currently does not change any hierarchy information
kwcoco.CocoDataset.remove_images
- Remove images and any annotations contained by them
kwcoco.CocoDataset.remove_keypoint_categories
- Removes all keypoints of a particular category as well as all annotation keypoints with those ids.
kwcoco.CocoDataset.remove_videos
- Remove videos and any images / annotations contained by them
kwcoco.CocoDataset.set_annotation_category
- Sets the category of a single annotation
CocoDataset methods (via MixinCocoObjects)¶
kwcoco.CocoDataset.annots
- Return vectorized annotation objects
kwcoco.CocoDataset.categories
- Return vectorized category objects
kwcoco.CocoDataset.images
- Return vectorized image objects
kwcoco.CocoDataset.videos
- Return vectorized video objects
CocoDataset methods (via MixinCocoStats)¶
kwcoco.CocoDataset.basic_stats
- Reports number of images, annotations, and categories.
kwcoco.CocoDataset.boxsize_stats
- Compute statistics about bounding box sizes.
kwcoco.CocoDataset.category_annotation_frequency
- Reports the number of annotations of each category
kwcoco.CocoDataset.category_annotation_type_frequency
- Reports the number of annotations of each type for each category
kwcoco.CocoDataset.conform
- Make the COCO file conform a stricter spec, infers attibutes where possible.
kwcoco.CocoDataset.extended_stats
- Reports number of images, annotations, and categories.
kwcoco.CocoDataset.find_representative_images
- Find images that have a wide array of categories. Attempt to find the fewest images that cover all categories using images that contain both a large and small number of annotations.
kwcoco.CocoDataset.stats
- This function corresponds tokwcoco.cli.coco_stats
.
kwcoco.CocoDataset.validate
- Performs checks on this coco dataset.
CocoDataset methods (via MixinCocoAccessors)¶
kwcoco.CocoDataset.category_graph
- Construct a networkx category hierarchy
kwcoco.CocoDataset.delayed_load
- Experimental method
kwcoco.CocoDataset.get_auxiliary_fpath
- Returns the full path to auxiliary data for an image
kwcoco.CocoDataset.get_image_fpath
- Returns the full path to the image
kwcoco.CocoDataset.keypoint_categories
- Construct a consistent CategoryTree representation of keypoint classes
kwcoco.CocoDataset.load_annot_sample
- Reads the chip of an annotation. Note this is much less efficient than using a sampler, but it doesn’t require disk cache.
kwcoco.CocoDataset.load_image
- Reads an image from disk and
kwcoco.CocoDataset.object_categories
- Construct a consistent CategoryTree representation of object classes
CocoDataset methods (via CocoDataset)¶
kwcoco.CocoDataset.copy
- Deep copies this object
kwcoco.CocoDataset.dump
- Writes the dataset out to the json format
kwcoco.CocoDataset.dumps
- Writes the dataset out to the json format
kwcoco.CocoDataset.subset
- Return a subset of the larger coco dataset by specifying which images to port. All annotations in those images will be taken.
kwcoco.CocoDataset.union
- Merges multipleCocoDataset
items into one. Names and associations are retained, but ids may be different.
kwcoco.CocoDataset.view_sql
- Create a cached SQL interface to this dataset suitable for large scale multiprocessing use cases.
CocoDataset methods (via MixinCocoExtras)¶
kwcoco.CocoDataset.corrupted_images
- Check for images that don’t exist or can’t be opened
kwcoco.CocoDataset.missing_images
- Check for images that don’t exist
kwcoco.CocoDataset.rename_categories
- Rename categories with a potentially coarser categorization.
kwcoco.CocoDataset.reroot
- Rebase image/data paths onto a new image/data root.
CocoDataset methods (via MixinCocoDraw)¶
kwcoco.CocoDataset.draw_image
- Use kwimage to draw all annotations on an image and return the pixels as a numpy array.
kwcoco.CocoDataset.imread
- Loads a particular image
kwcoco.CocoDataset.show_image
- Use matplotlib to show an image with annotations overlaid
kwcoco¶
kwcoco package¶
Subpackages¶
kwcoco.cli package¶
Submodules¶
- class kwcoco.cli.coco_conform.CocoConformCLI[source]¶
Bases:
object
- name = 'conform'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Make the COCO file conform to the spec.
Populates inferable information such as image size, annotation area, etc.
- epilog = '\n Example Usage:\n kwcoco conform --help\n kwcoco conform --src=special:shapes8 --dst conformed.json\n '¶
- default = {'dst': <Value(None: None)>, 'ensure_imgsize': <Value(None: True)>, 'legacy': <Value(None: False)>, 'pycocotools_info': <Value(None: True)>, 'src': <Value(None: None)>, 'workers': <Value(None: 8)>}¶
- class kwcoco.cli.coco_grab.CocoGrabCLI[source]¶
Bases:
object
- name = 'grab'¶
- class kwcoco.cli.coco_modify_categories.CocoModifyCatsCLI[source]¶
Bases:
object
Remove, rename, or coarsen categories.
- name = 'modify_categories'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Rename or remove categories
- epilog = '\n Example Usage:\n kwcoco modify_categories --help\n kwcoco modify_categories --src=special:shapes8 --dst modcats.json\n kwcoco modify_categories --src=special:shapes8 --dst modcats.json --rename eff:F,star:sun\n kwcoco modify_categories --src=special:shapes8 --dst modcats.json --remove eff,star\n kwcoco modify_categories --src=special:shapes8 --dst modcats.json --keep eff,\n\n kwcoco modify_categories --src=special:shapes8 --dst modcats.json --keep=[] --keep_annots=True\n '¶
- default = {'dst': <Value(None: None)>, 'keep': <Value(None: None)>, 'keep_annots': <Value(None: False)>, 'remove': <Value(None: None)>, 'rename': <Value(<class 'str'>: None)>, 'src': <Value(None: None)>}¶
- class kwcoco.cli.coco_reroot.CocoRerootCLI[source]¶
Bases:
object
- name = 'reroot'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Reroot image paths onto a new image root.
Modify the root of a coco dataset such to either make paths relative to a new root or make paths absolute.
Todo
[ ] Evaluate that all tests cases work
- epilog = '\n\n Example Usage:\n kwcoco reroot --help\n kwcoco reroot --src=special:shapes8 --dst rerooted.json\n kwcoco reroot --src=special:shapes8 --new_prefix=foo --check=True --dst rerooted.json\n '¶
- default = {'absolute': <Value(None: True)>, 'check': <Value(None: True)>, 'dst': <Value(None: None)>, 'new_prefix': <Value(None: None)>, 'old_prefix': <Value(None: None)>, 'src': <Value(None: None)>}¶
- class kwcoco.cli.coco_show.CocoShowCLI[source]¶
Bases:
object
- name = 'show'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Visualize a COCO image using matplotlib or opencv, optionally writing it to disk
- epilog = '\n Example Usage:\n kwcoco show --help\n kwcoco show --src=special:shapes8 --gid=1\n kwcoco show --src=special:shapes8 --gid=1 --dst out.png\n '¶
- default = {'aid': <Value(None: None)>, 'channels': <Value(<class 'str'>: None)>, 'dst': <Value(None: None)>, 'gid': <Value(None: None)>, 'mode': <Value(None: 'matplotlib')>, 'show_annots': <Value(None: True)>, 'show_labels': <Value(None: False)>, 'src': <Value(None: None)>}¶
- class kwcoco.cli.coco_split.CocoSplitCLI[source]¶
Bases:
object
- name = 'split'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Split a single COCO dataset into two sub-datasets.
- default = {'dst1': <Value(None: 'split1.mscoco.json')>, 'dst2': <Value(None: 'split2.mscoco.json')>, 'factor': <Value(None: 3)>, 'rng': <Value(None: None)>, 'src': <Value(None: None)>}¶
- epilog = '\n Example Usage:\n kwcoco split --src special:shapes8 --dst1=learn.mscoco.json --dst2=test.mscoco.json --factor=3 --rng=42\n '¶
- classmethod main(cmdline=True, **kw)[source]¶
Example
>>> from kwcoco.cli.coco_split import * # NOQA >>> import ubelt as ub >>> dpath = ub.Path.appdir('kwcoco/tests/cli/split').ensuredir() >>> kw = {'src': 'special:shapes8', >>> 'dst1': dpath / 'train.json', >>> 'dst2': dpath / 'test.json'} >>> cmdline = False >>> cls = CocoSplitCLI >>> cls.main(cmdline, **kw)
- class kwcoco.cli.coco_stats.CocoStatsCLI[source]¶
Bases:
object
- name = 'stats'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Compute summary statistics about a COCO dataset
- default = {'annot_attrs': <Value(None: False)>, 'basic': <Value(None: True)>, 'boxes': <Value(None: False)>, 'catfreq': <Value(None: True)>, 'embed': <Value(None: False)>, 'extended': <Value(None: True)>, 'image_attrs': <Value(None: False)>, 'image_size': <Value(None: False)>, 'src': <Value(None: ['special:shapes8'])>, 'video_attrs': <Value(None: False)>}¶
- epilog = '\n Example Usage:\n kwcoco stats --src=special:shapes8\n kwcoco stats --src=special:shapes8 --boxes=True\n '¶
- class kwcoco.cli.coco_subset.CocoSubsetCLI[source]¶
Bases:
object
- name = 'subset'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Take a subset of this dataset and write it to a new file
- default = {'absolute': <Value(None: 'auto')>, 'channels': <Value(None: None)>, 'copy_assets': <Value(None: False)>, 'dst': <Value(None: None)>, 'gids': <Value(None: None)>, 'include_categories': <Value(<class 'str'>: None)>, 'select_images': <Value(<class 'str'>: None)>, 'select_videos': <Value(None: None)>, 'src': <Value(None: None)>}¶
- epilog = '\n Example Usage:\n kwcoco subset --src special:shapes8 --dst=foo.kwcoco.json\n\n # Take only the even image-ids\n kwcoco subset --src special:shapes8 --dst=foo-even.kwcoco.json --select_images \'.id % 2 == 0\'\n\n # Take only the videos where the name ends with 2\n kwcoco subset --src special:vidshapes8 --dst=vidsub.kwcoco.json --select_videos \'.name | endswith("2")\'\n '¶
- classmethod main(cmdline=True, **kw)[source]¶
Example
>>> from kwcoco.cli.coco_subset import * # NOQA >>> import ubelt as ub >>> dpath = ub.Path.appdir('kwcoco/tests/cli/union').ensuredir() >>> kw = {'src': 'special:shapes8', >>> 'dst': dpath / 'subset.json', >>> 'include_categories': 'superstar'} >>> cmdline = False >>> cls = CocoSubsetCLI >>> cls.main(cmdline, **kw)
- kwcoco.cli.coco_subset.query_subset(dset, config)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:jq) >>> from kwcoco.cli.coco_subset import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> assert dset.n_images == 3 >>> # >>> config = CocoSubsetCLI.CLIConfig({'select_images': '.id < 3'}) >>> new_dset = query_subset(dset, config) >>> assert new_dset.n_images == 2 >>> # >>> config = CocoSubsetCLI.CLIConfig({'select_images': '.file_name | test(".*.png")'}) >>> new_dset = query_subset(dset, config) >>> assert all(n.endswith('.png') for n in new_dset.images().lookup('file_name')) >>> assert new_dset.n_images == 2 >>> # >>> config = CocoSubsetCLI.CLIConfig({'select_images': '.file_name | test(".*.png") | not'}) >>> new_dset = query_subset(dset, config) >>> assert not any(n.endswith('.png') for n in new_dset.images().lookup('file_name')) >>> assert new_dset.n_images == 1 >>> # >>> config = CocoSubsetCLI.CLIConfig({'select_images': '.id < 3 and (.file_name | test(".*.png"))'}) >>> new_dset = query_subset(dset, config) >>> assert new_dset.n_images == 1 >>> # >>> config = CocoSubsetCLI.CLIConfig({'select_images': '.id < 3 or (.file_name | test(".*.png"))'}) >>> new_dset = query_subset(dset, config) >>> assert new_dset.n_images == 3
Example
>>> # xdoctest: +REQUIRES(module:jq) >>> from kwcoco.cli.coco_subset import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8') >>> assert dset.n_videos == 8 >>> assert dset.n_images == 16 >>> config = CocoSubsetCLI.CLIConfig({'select_videos': '.name == "toy_video_3"'}) >>> new_dset = query_subset(dset, config) >>> assert new_dset.n_images == 2 >>> assert new_dset.n_videos == 1
- class kwcoco.cli.coco_toydata.CocoToyDataCLI[source]¶
Bases:
object
- name = 'toydata'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Create COCO toydata for demo and testing purposes.
- default = {'bundle_dpath': <Value(None: None)>, 'dst': <Value(None: None)>, 'key': <Value(None: 'shapes8')>, 'use_cache': <Value(None: True)>, 'verbose': <Value(None: False)>}¶
- epilog = '\n Example Usage:\n kwcoco toydata --key=shapes8 --dst=toydata.kwcoco.json\n\n kwcoco toydata --key=shapes8 --bundle_dpath=my_test_bundle_v1\n kwcoco toydata --key=shapes8 --bundle_dpath=my_test_bundle_v1\n\n kwcoco toydata \\\n --key=vidshapes1-frames32 \\\n --dst=./mytoybundle/dataset.kwcoco.json\n\n TODO:\n - [ ] allow specification of images directory\n '¶
- classmethod main(cmdline=True, **kw)[source]¶
Example
>>> from kwcoco.cli.coco_toydata import * # NOQA >>> import ubelt as ub >>> dpath = ub.Path.appdir('kwcoco/tests/cli/demo').ensuredir() >>> kw = {'key': 'shapes8', 'dst': dpath / 'test.json'} >>> cmdline = False >>> cls = CocoToyDataCLI >>> cls.main(cmdline, **kw)
- class kwcoco.cli.coco_union.CocoUnionCLI[source]¶
Bases:
object
- name = 'union'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Combine multiple COCO datasets into a single merged dataset.
- default = {'absolute': <Value(None: False)>, 'dst': <Value(None: 'combo.kwcoco.json')>, 'src': <Value(None: [])>}¶
- epilog = '\n Example Usage:\n kwcoco union --src special:shapes8 special:shapes1 --dst=combo.kwcoco.json\n '¶
- classmethod main(cmdline=True, **kw)[source]¶
Example
>>> from kwcoco.cli.coco_union import * # NOQA >>> import ubelt as ub >>> dpath = ub.Path.appdir('kwcoco/tests/cli/union').ensuredir() >>> dst_fpath = dpath / 'combo.kwcoco.json' >>> kw = { >>> 'src': ['special:shapes8', 'special:shapes1'], >>> 'dst': dst_fpath >>> } >>> cmdline = False >>> cls = CocoUnionCLI >>> cls.main(cmdline, **kw)
- class kwcoco.cli.coco_validate.CocoValidateCLI[source]¶
Bases:
object
- name = 'validate'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Validate that a coco file conforms to the json schema, that assets exist, and potentially fix corrupted assets by removing them.
- default = {'channels': <Value(None: True)>, 'corrupted': <Value(None: False)>, 'dst': <Value(None: None)>, 'fastfail': <Value(None: False)>, 'fix': <Value(None: None)>, 'img_attrs': <Value(None: 'warn')>, 'missing': <Value(None: True)>, 'require_relative': <Value(None: False)>, 'schema': <Value(None: True)>, 'src': <Value(None: ['special:shapes8'])>, 'unique': <Value(None: True)>, 'verbose': <Value(None: 1)>}¶
- epilog = '\n Example Usage:\n kwcoco toydata --dst foo.json --key=special:shapes8\n kwcoco validate --src=foo.json --corrupted=True\n '¶
Module contents¶
kwcoco.data package¶
Submodules¶
Downloads the CamVid data if necessary, and converts it to COCO.
- kwcoco.data.grab_camvid.grab_camvid_sampler()[source]¶
Grab a kwcoco.CocoSampler object for the CamVid dataset.
- Returns
sampler
- Return type
kwcoco.CocoSampler
Example
>>> # xdoctest: +REQUIRES(--download) >>> sampler = grab_camvid_sampler() >>> print('sampler = {!r}'.format(sampler)) >>> # sampler.load_sample() >>> for gid in ub.ProgIter(sampler.image_ids, desc='load image'): >>> img = sampler.load_image(gid)
- kwcoco.data.grab_camvid.grab_coco_camvid()[source]¶
Example
>>> # xdoctest: +REQUIRES(--download) >>> dset = grab_coco_camvid() >>> print('dset = {!r}'.format(dset)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> plt = kwplot.autoplt() >>> plt.clf() >>> dset.show_image(gid=1)
- kwcoco.data.grab_camvid.convert_camvid_raw_to_coco(camvid_raw_info)[source]¶
Converts the raw camvid format to an MSCOCO based format, ( which lets use use kwcoco’s COCO backend).
Example
>>> # xdoctest: +REQUIRES(--download) >>> camvid_raw_info = grab_raw_camvid() >>> # test with a reduced set of data >>> del camvid_raw_info['img_paths'][2:] >>> del camvid_raw_info['mask_paths'][2:] >>> dset = convert_camvid_raw_to_coco(camvid_raw_info) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> plt = kwplot.autoplt() >>> kwplot.figure(fnum=1, pnum=(1, 2, 1)) >>> dset.show_image(gid=1) >>> kwplot.figure(fnum=1, pnum=(1, 2, 2)) >>> dset.show_image(gid=2)
- kwcoco.data.grab_camvid.main()[source]¶
Dump the paths to the coco file to stdout
- By default these will go to in the path:
~/.cache/kwcoco/camvid/camvid-master
- The four files will be:
~/.cache/kwcoco/camvid/camvid-master/camvid-full.mscoco.json ~/.cache/kwcoco/camvid/camvid-master/camvid-train.mscoco.json ~/.cache/kwcoco/camvid/camvid-master/camvid-vali.mscoco.json ~/.cache/kwcoco/camvid/camvid-master/camvid-test.mscoco.json
Todo
[ ] UCF101 - Action Recognition Data Set - https://www.crcv.ucf.edu/data/UCF101.php
[ ] HMDB: a large human motion database - https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
[ ] https://paperswithcode.com/dataset/visual-question-answering
References
- kwcoco.data.grab_voc.ensure_voc_data(dpath=None, force=False, years=[2007, 2012])[source]¶
Download the Pascal VOC data if it does not already exist.
Note
[ ] These URLS seem to be dead
Example
>>> # xdoctest: +REQUIRES(--download) >>> devkit_dpath = ensure_voc_data()
Module contents¶
kwcoco.demo package¶
Submodules¶
- class kwcoco.demo.boids.Boids(num, dims=2, rng=None, **kwargs)[source]¶
Bases:
NiceRepr
Efficient numpy based backend for generating boid positions.
BOID = bird-oid object
References
https://www.youtube.com/watch?v=mhjuuHl6qHM https://medium.com/better-programming/boids-simulating-birds-flock-behavior-in-python-9fff99375118 https://en.wikipedia.org/wiki/Boids
Example
>>> from kwcoco.demo.boids import * # NOQA >>> num_frames = 10 >>> num_objects = 3 >>> rng = None >>> self = Boids(num=num_objects, rng=rng).initialize() >>> paths = self.paths(num_frames) >>> # >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> plt = kwplot.autoplt() >>> from mpl_toolkits.mplot3d import Axes3D # NOQA >>> ax = plt.gca(projection='3d') >>> ax.cla() >>> # >>> for path in paths: >>> time = np.arange(len(path)) >>> ax.plot(time, path.T[0] * 1, path.T[1] * 1, ',-') >>> ax.set_xlim(0, num_frames) >>> ax.set_ylim(-.01, 1.01) >>> ax.set_zlim(-.01, 1.01) >>> ax.set_xlabel('time') >>> ax.set_ylabel('u-pos') >>> ax.set_zlabel('v-pos') >>> kwplot.show_if_requested()
import xdev _ = xdev.profile_now(self.compute_forces)() _ = xdev.profile_now(self.update_neighbors)()
Example
>>> # Test determenism >>> from kwcoco.demo.boids import * # NOQA >>> num_frames = 2 >>> num_objects = 1 >>> rng = 4532 >>> self = Boids(num=num_objects, rng=rng).initialize() >>> #print(ub.hash_data(self.pos)) >>> #print(ub.hash_data(self.vel)) >>> #print(ub.hash_data(self.acc)) >>> tocheck = [] >>> for i in range(100): >>> self = Boids(num=num_objects, rng=rng).initialize() >>> self.step() >>> self.step() >>> self.step() >>> tocheck.append(self.pos.copy()) >>> assert ub.allsame(list(map(ub.hash_data, tocheck)))
- kwcoco.demo.boids.clamp_mag(vec, mag, axis=None)[source]¶
vec = np.random.rand(10, 2) mag = 1.0 axis = 1 new_vec = clamp_mag(vec, mag, axis) np.linalg.norm(new_vec, axis=axis)
- kwcoco.demo.boids.triu_condense_multi_index(multi_index, dims, symetric=False)[source]¶
Like np.ravel_multi_index but returns positions in an upper triangular condensed square matrix
Examples
- multi_index (Tuple[ArrayLike]):
indexes for each dimension into the square matrix
- dims (Tuple[int]):
shape of each dimension in the square matrix (should all be the same)
- symetric (bool):
if True, converts lower triangular indices to their upper triangular location. This may cause a copy to occur.
References
https://stackoverflow.com/a/36867493/887074 https://numpy.org/doc/stable/reference/generated/numpy.ravel_multi_index.html#numpy.ravel_multi_index
Examples
>>> dims = (3, 3) >>> symetric = True >>> multi_index = (np.array([0, 0, 1]), np.array([1, 2, 2])) >>> condensed_idxs = triu_condense_multi_index(multi_index, dims, symetric=symetric) >>> assert condensed_idxs.tolist() == [0, 1, 2]
>>> n = 7 >>> symetric = True >>> multi_index = np.triu_indices(n=n, k=1) >>> condensed_idxs = triu_condense_multi_index(multi_index, [n] * 2, symetric=symetric) >>> assert condensed_idxs.tolist() == list(range(n * (n - 1) // 2)) >>> from scipy.spatial.distance import pdist, squareform >>> square_mat = np.zeros((n, n)) >>> conden_mat = squareform(square_mat) >>> conden_mat[condensed_idxs] = np.arange(len(condensed_idxs)) + 1 >>> square_mat = squareform(conden_mat) >>> print('square_mat =\n{}'.format(ub.repr2(square_mat, nl=1)))
>>> n = 7 >>> symetric = True >>> multi_index = np.tril_indices(n=n, k=-1) >>> condensed_idxs = triu_condense_multi_index(multi_index, [n] * 2, symetric=symetric) >>> assert sorted(condensed_idxs.tolist()) == list(range(n * (n - 1) // 2)) >>> from scipy.spatial.distance import pdist, squareform >>> square_mat = np.zeros((n, n)) >>> conden_mat = squareform(square_mat, checks=False) >>> conden_mat[condensed_idxs] = np.arange(len(condensed_idxs)) + 1 >>> square_mat = squareform(conden_mat) >>> print('square_mat =\n{}'.format(ub.repr2(square_mat, nl=1)))
- kwcoco.demo.boids.closest_point_on_line_segment(pts, e1, e2)[source]¶
Finds the closet point from p on line segment (e1, e2)
- Parameters
pts (ndarray) – xy points [Nx2]
e1 (ndarray) – the first xy endpoint of the segment
e2 (ndarray) – the second xy endpoint of the segment
- Returns
pt_on_seg - the closest xy point on (e1, e2) from ptp
- Return type
ndarray
References
http://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line http://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment
Example
>>> # ENABLE_DOCTEST >>> from kwcoco.demo.boids import * # NOQA >>> verts = np.array([[ 21.83012702, 13.16987298], >>> [ 16.83012702, 21.83012702], >>> [ 8.16987298, 16.83012702], >>> [ 13.16987298, 8.16987298], >>> [ 21.83012702, 13.16987298]]) >>> rng = np.random.RandomState(0) >>> pts = rng.rand(64, 2) * 20 + 5 >>> e1, e2 = verts[0:2] >>> closest_point_on_line_segment(pts, e1, e2)
- kwcoco.demo.perterb.perterb_coco(coco_dset, **kwargs)[source]¶
Perterbs a coco dataset
- Parameters
rng (int, default=0)
box_noise (int, default=0)
cls_noise (int, default=0)
null_pred (bool, default=False)
with_probs (bool, default=False)
score_noise (float, default=0.2)
hacked (int, default=1)
Example
>>> from kwcoco.demo.perterb import * # NOQA >>> from kwcoco.demo.perterb import _demo_construct_probs >>> import kwcoco >>> coco_dset = true_dset = kwcoco.CocoDataset.demo('shapes2') >>> kwargs = { >>> 'box_noise': 0.5, >>> 'n_fp': 3, >>> 'with_probs': 1, >>> 'with_heatmaps': 1, >>> } >>> pred_dset = perterb_coco(true_dset, **kwargs) >>> pred_dset._check_json_serializable() >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> gid = 1 >>> canvas = true_dset.delayed_load(gid).finalize() >>> canvas = true_dset.annots(gid=gid).detections.draw_on(canvas, color='green') >>> canvas = pred_dset.annots(gid=gid).detections.draw_on(canvas, color='blue') >>> kwplot.imshow(canvas)
Module contents¶
kwcoco.examples package¶
Submodules¶
- kwcoco.examples.draw_gt_and_predicted_boxes.draw_true_and_pred_boxes(true_fpath, pred_fpath, gid, viz_fpath)[source]¶
How do you generally visualize gt and predicted bounding boxes together?
Example
>>> import kwcoco >>> import ubelt as ub >>> from os.path import join >>> from kwcoco.demo.perterb import perterb_coco >>> # Create a working directory >>> dpath = ub.ensure_app_cache_dir('kwcoco/examples/draw_true_and_pred_boxes') >>> # Lets setup some dummy true data >>> true_dset = kwcoco.CocoDataset.demo('shapes2') >>> true_dset.fpath = join(dpath, 'true_dset.kwcoco.json') >>> true_dset.dump(true_dset.fpath, newlines=True) >>> # Lets setup some dummy predicted data >>> pred_dset = perterb_coco(true_dset, box_noise=100, rng=421) >>> pred_dset.fpath = join(dpath, 'pred_dset.kwcoco.json') >>> pred_dset.dump(pred_dset.fpath, newlines=True) >>> # >>> # We now have our true and predicted data, lets visualize >>> true_fpath = true_dset.fpath >>> pred_fpath = pred_dset.fpath >>> print('dpath = {!r}'.format(dpath)) >>> print('true_fpath = {!r}'.format(true_fpath)) >>> print('pred_fpath = {!r}'.format(pred_fpath)) >>> # Lets choose an image id to visualize and a path to write to >>> gid = 1 >>> viz_fpath = join(dpath, 'viz_{}.jpg'.format(gid)) >>> # The answer to the question is in the logic of this function >>> draw_true_and_pred_boxes(true_fpath, pred_fpath, gid, viz_fpath)
These are answers to the questions: How do I?
- kwcoco.examples.getting_started_existing_dataset.getting_started_existing_dataset()[source]¶
If you want to start using the Python API. Just open IPython and try:
- kwcoco.examples.getting_started_existing_dataset.demo_vectorize_interface()[source]¶
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes2') >>> # >>> aids = [1, 2, 3, 4] >>> annots = dset.annots(aids) ... >>> print('annots = {!r}'.format(annots)) annots = <Annots(num=4) at ...>
>>> annots.lookup('bbox') [[346.5, 335.2, 33.2, 99.4], [344.5, 327.7, 48.8, 111.1], [548.0, 154.4, 57.2, 62.1], [548.7, 151.0, 59.4, 80.5]]
>>> gids = annots.lookup('image_id') >>> print('gids = {!r}'.format(gids)) gids = [1, 2, 1, 2]
>>> images = dset.images(gids) >>> list(zip(images.lookup('width'), images.lookup('height'))) [(600, 600), (600, 600), (600, 600), (600, 600)]
Module contents¶
kwcoco.metrics package¶
Submodules¶
Todo
- [ ] _fast_pdist_priority: Look at absolute difference in sibling entropy
when deciding whether to go up or down in the tree.
- [ ] medschool applications true-pred matching (applicant proposing) fast
algorithm.
- [ ] Maybe looping over truth rather than pred is faster? but it makes you
have to combine pred score / ious, which is weird.
- [x] preallocate ndarray and use hstack to build confusion vectors?
doesn’t help
- [ ] relevant classes / classes / classes-of-interest we care about needs
to be a first class member of detection metrics.
- [ ] Add parameter that allows one prediction to “match” to more than one
truth object. (example: we have a duck detector problem and all the ducks in a row are annotated as separate object, and we only care about getting the group)
- kwcoco.metrics.clf_report.classification_report(y_true, y_pred, target_names=None, sample_weight=None, verbose=False, remove_unsupported=False, log=None, ascii_only=False)[source]¶
Computes a classification report which is a collection of various metrics commonly used to evaulate classification quality. This can handle binary and multiclass settings.
Note that this function does not accept probabilities or scores and must instead act on final decisions. See ovr_classification_report for a probability based report function using a one-vs-rest strategy.
This emulates the bm(cm) Matlab script [MatlabBM] written by David Powers that is used for computing bookmaker, markedness, and various other scores and is based on the paper [PowersMetrics].
- References:
- PowersMetrics
- MatlabBM
https://www.mathworks.com/matlabcentral/fileexchange/5648-bm-cm-?requestedDomain=www.mathworks.com
- MulticlassMCC
Jurman, Riccadonna, Furlanello, (2012). A Comparison of MCC and CEN Error Measures in MultiClass Prediction
- Args:
y_true (array): true labels for each item
y_pred (array): predicted labels for each item
target_names (List): mapping from label to category name
sample_weight (ndarray): weight for each item
verbose (False): print if True
log (callable): print or logging function
- remove_unsupported (bool, default=False): removes categories that have
no support.
- ascii_only (bool, default=False): if True dont use unicode characters.
if the environ ASCII_ONLY is present this is forced to True and cannot be undone.
- Example:
>>> # xdoctest: +IGNORE_WANT >>> # xdoctest: +REQUIRES(module:sklearn) >>> # xdoctest: +REQUIRES(module:pandas) >>> y_true = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3] >>> y_pred = [1, 2, 1, 3, 1, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 1, 3] >>> target_names = None >>> sample_weight = None >>> report = classification_report(y_true, y_pred, verbose=0, ascii_only=1) >>> print(report['confusion']) pred 1 2 3 Σr real 1 3 1 1 5 2 0 4 1 5 3 1 1 6 8 Σp 4 6 8 18 >>> print(report['metrics']) metric precision recall fpr markedness bookmaker mcc support class 1 0.7500 0.6000 0.0769 0.6071 0.5231 0.5635 5 2 0.6667 0.8000 0.1538 0.5833 0.6462 0.6139 5 3 0.7500 0.7500 0.2000 0.5500 0.5500 0.5500 8 combined 0.7269 0.7222 0.1530 0.5751 0.5761 0.5758 18
- Example:
>>> # xdoctest: +IGNORE_WANT >>> # xdoctest: +REQUIRES(module:sklearn) >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics.clf_report import * # NOQA >>> y_true = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3] >>> y_pred = [1, 2, 1, 3, 1, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 1, 3] >>> target_names = None >>> sample_weight = None >>> logs = [] >>> report = classification_report(y_true, y_pred, verbose=1, ascii_only=True, log=logs.append) >>> print('
‘.join(logs))
- Ignore:
>>> size = 100 >>> rng = np.random.RandomState(0) >>> p_classes = np.array([.90, .05, .05][0:2]) >>> p_classes = p_classes / p_classes.sum() >>> p_wrong = np.array([.03, .01, .02][0:2]) >>> y_true = testdata_ytrue(p_classes, p_wrong, size, rng) >>> rs = [] >>> for x in range(17): >>> p_wrong += .05 >>> y_pred = testdata_ypred(y_true, p_wrong, rng) >>> report = classification_report(y_true, y_pred, verbose='hack') >>> rs.append(report) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> import pandas as pd >>> df = pd.DataFrame(rs).drop(['raw'], axis=1) >>> delta = df.subtract(df['target'], axis=0) >>> sqrd_error = np.sqrt((delta ** 2).sum(axis=0)) >>> print('Error') >>> print(sqrd_error.sort_values()) >>> ys = df.to_dict(orient='list') >>> kwplot.multi_plot(ydata_list=ys)
- kwcoco.metrics.clf_report.ovr_classification_report(mc_y_true, mc_probs, target_names=None, sample_weight=None, metrics=None, verbose=0, remove_unsupported=False, log=None)[source]¶
One-vs-rest classification report
- Parameters
mc_y_true (ndarray[Any, Int]) – multiclass truth labels (integer label format). Shape [N].
mc_probs (ndarray) – multiclass probabilities for each class. Shape [N x C].
target_names (Dict[int, str]) – mapping from int label to string name
sample_weight (ndarray) – weight for each item. Shape [N].
metrics (List[str]) – names of metrics to compute
Example
>>> # xdoctest: +IGNORE_WANT >>> # xdoctest: +REQUIRES(module:sklearn) >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics.clf_report import * # NOQA >>> y_true = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0] >>> y_probs = np.random.rand(len(y_true), max(y_true) + 1) >>> target_names = None >>> sample_weight = None >>> verbose = True >>> report = ovr_classification_report(y_true, y_probs) >>> print(report['ave']) auc 0.6541 ap 0.6824 kappa 0.0963 mcc 0.1002 brier 0.2214 dtype: float64 >>> print(report['ovr']) auc ap kappa mcc brier support weight 0 0.6062 0.6161 0.0526 0.0598 0.2608 8 0.4444 1 0.5846 0.6014 0.0000 0.0000 0.2195 5 0.2778 2 0.8000 0.8693 0.2623 0.2652 0.1602 5 0.2778
Classes that store accumulated confusion measures (usually derived from confusion vectors).
- For each chosen threshold value:
thresholds[i] - the i-th threshold value
The primary data we manipulate are arrays of “confusion” counts, i.e.
tp_count[i] - true positives at the i-th threshold
fp_count[i] - false positives at the i-th threshold
fn_count[i] - false negatives at the i-th threshold
tn_count[i] - true negatives at the i-th threshold
- class kwcoco.metrics.confusion_measures.Measures(info)[source]¶
-
Holds accumulated confusion counts, and derived measures
Example
>>> from kwcoco.metrics.confusion_vectors import BinaryConfusionVectors # NOQA >>> binvecs = BinaryConfusionVectors.demo(n=100, p_error=0.5) >>> self = binvecs.measures() >>> print('self = {!r}'.format(self)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> self.draw(doclf=True) >>> self.draw(key='pr', pnum=(1, 2, 1)) >>> self.draw(key='roc', pnum=(1, 2, 2)) >>> kwplot.show_if_requested()
- property catname¶
- draw(key=None, prefix='', **kw)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors # NOQA >>> cfsn_vecs = ConfusionVectors.demo() >>> ovr_cfsn = cfsn_vecs.binarize_ovr(keyby='name') >>> self = ovr_cfsn.measures()['perclass'] >>> self.draw('mcc', doclf=True, fnum=1) >>> self.draw('pr', doclf=1, fnum=2) >>> self.draw('roc', doclf=1, fnum=3)
- summary_plot(fnum=1, title='', subplots='auto')[source]¶
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors # NOQA >>> cfsn_vecs = ConfusionVectors.demo(n=3, p_error=0.5) >>> binvecs = cfsn_vecs.binarize_classless() >>> self = binvecs.measures() >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> self.summary_plot() >>> kwplot.show_if_requested()
- classmethod demo(**kwargs)[source]¶
Create a demo Measures object for testing / demos
- Parameters
**kwargs – passed to
BinaryConfusionVectors.demo()
. some valid keys are: n, rng, p_rue, p_error, p_miss.
- classmethod combine(tocombine, precision=None, growth=None, thresh_bins=None)[source]¶
Combine binary confusion metrics
- Parameters
tocombine (List[Measures]) – a list of measures to combine into one
precision (int | None) – If specified rounds thresholds to this precision which can prevent a RAM explosion when combining a large number of measures. However, this is a lossy operation and will impact the underlying scores. NOTE: use
growth
instead.growth (int | None) – if specified this limits how much the resulting measures are allowed to grow by. If None, growth is unlimited. Otherwise, if growth is ‘max’, the growth is limited to the maximum length of an input. We might make this more numerical in the future.
thresh_bins (int) – Force this many threshold bins.
- Returns
kwcoco.metrics.confusion_measures.Measures
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> measures1 = Measures.demo(n=15) >>> measures2 = measures1 >>> tocombine = [measures1, measures2] >>> new_measures = Measures.combine(tocombine) >>> new_measures.reconstruct() >>> print('new_measures = {!r}'.format(new_measures)) >>> print('measures1 = {!r}'.format(measures1)) >>> print('measures2 = {!r}'.format(measures2)) >>> print(ub.repr2(measures1.__json__(), nl=1, sort=0)) >>> print(ub.repr2(measures2.__json__(), nl=1, sort=0)) >>> print(ub.repr2(new_measures.__json__(), nl=1, sort=0)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.figure(fnum=1) >>> new_measures.summary_plot() >>> measures1.summary_plot() >>> measures1.draw('roc') >>> measures2.draw('roc') >>> new_measures.draw('roc')
Example
>>> # Demonstrate issues that can arrise from choosing a precision >>> # that is too low when combining metrics. Breakpoints >>> # between different metrics can get muddled, but choosing a >>> # precision that is too high can overwhelm memory. >>> from kwcoco.metrics.confusion_measures import * # NOQA >>> base = ub.map_vals(np.asarray, { >>> 'tp_count': [ 1, 1, 2, 2, 2, 2, 3], >>> 'fp_count': [ 0, 1, 1, 2, 3, 4, 5], >>> 'fn_count': [ 1, 1, 0, 0, 0, 0, 0], >>> 'tn_count': [ 5, 4, 4, 3, 2, 1, 0], >>> 'thresholds': [.0, .0, .0, .0, .0, .0, .0], >>> }) >>> # Make tiny offsets to thresholds >>> rng = kwarray.ensure_rng(0) >>> n = len(base['thresholds']) >>> offsets = [ >>> sorted(rng.rand(n) * 10 ** -rng.randint(4, 7))[::-1] >>> for _ in range(20) >>> ] >>> tocombine = [] >>> for offset in offsets: >>> base_n = base.copy() >>> base_n['thresholds'] += offset >>> measures_n = Measures(base_n).reconstruct() >>> tocombine.append(measures_n) >>> for precision in [6, 5, 2]: >>> combo = Measures.combine(tocombine, precision=precision).reconstruct() >>> print('precision = {!r}'.format(precision)) >>> print('combo = {}'.format(ub.repr2(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> for growth in [None, 'max', 'log', 'root', 'half']: >>> combo = Measures.combine(tocombine, growth=growth).reconstruct() >>> print('growth = {!r}'.format(growth)) >>> print('combo = {}'.format(ub.repr2(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> #print(combo.counts().pandas())
Example
>>> # Test case: combining a single measures should leave it unchanged >>> from kwcoco.metrics.confusion_measures import * # NOQA >>> measures = Measures.demo(n=40, p_true=0.2, p_error=0.4, p_miss=0.6) >>> df1 = measures.counts().pandas().fillna(0) >>> print(df1) >>> tocombine = [measures] >>> combo = Measures.combine(tocombine) >>> df2 = combo.counts().pandas().fillna(0) >>> print(df2) >>> assert np.allclose(df1, df2)
>>> combo = Measures.combine(tocombine, thresh_bins=2) >>> df3 = combo.counts().pandas().fillna(0) >>> print(df3)
>>> # I am NOT sure if this is correct or not >>> thresh_bins = 20 >>> combo = Measures.combine(tocombine, thresh_bins=thresh_bins) >>> df4 = combo.counts().pandas().fillna(0) >>> print(df4)
>>> combo = Measures.combine(tocombine, thresh_bins=np.linspace(0, 1, 20)) >>> df4 = combo.counts().pandas().fillna(0) >>> print(df4)
assert np.allclose(combo[‘thresholds’], measures[‘thresholds’]) assert np.allclose(combo[‘fp_count’], measures[‘fp_count’]) assert np.allclose(combo[‘tp_count’], measures[‘tp_count’]) assert np.allclose(combo[‘tp_count’], measures[‘tp_count’])
globals().update(xdev.get_func_kwargs(Measures.combine))
Example
>>> # Test degenerate case >>> from kwcoco.metrics.confusion_measures import * # NOQA >>> tocombine = [ >>> {'fn_count': [0.0], 'fp_count': [359980.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7747.0]}, >>> {'fn_count': [0.0], 'fp_count': [360849.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [424.0]}, >>> {'fn_count': [0.0], 'fp_count': [367003.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [991.0]}, >>> {'fn_count': [0.0], 'fp_count': [367976.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [1017.0]}, >>> {'fn_count': [0.0], 'fp_count': [676338.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7067.0]}, >>> {'fn_count': [0.0], 'fp_count': [676348.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7406.0]}, >>> {'fn_count': [0.0], 'fp_count': [676626.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7858.0]}, >>> {'fn_count': [0.0], 'fp_count': [676693.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [10969.0]}, >>> {'fn_count': [0.0], 'fp_count': [677269.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11188.0]}, >>> {'fn_count': [0.0], 'fp_count': [677331.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11734.0]}, >>> {'fn_count': [0.0], 'fp_count': [677395.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11556.0]}, >>> {'fn_count': [0.0], 'fp_count': [677418.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11621.0]}, >>> {'fn_count': [0.0], 'fp_count': [677422.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11424.0]}, >>> {'fn_count': [0.0], 'fp_count': [677648.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [9804.0]}, >>> {'fn_count': [0.0], 'fp_count': [677826.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [2470.0]}, >>> {'fn_count': [0.0], 'fp_count': [677834.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [2470.0]}, >>> {'fn_count': [0.0], 'fp_count': [677835.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [2470.0]}, >>> {'fn_count': [11123.0, 0.0], 'fp_count': [0.0, 676754.0], 'thresholds': [0.0002442002442002442, 0.0], 'tn_count': [676754.0, 0.0], 'tp_count': [2.0, 11125.0]}, >>> {'fn_count': [7738.0, 0.0], 'fp_count': [0.0, 676466.0], 'thresholds': [0.0002442002442002442, 0.0], 'tn_count': [676466.0, 0.0], 'tp_count': [0.0, 7738.0]}, >>> {'fn_count': [8653.0, 0.0], 'fp_count': [0.0, 676341.0], 'thresholds': [0.0002442002442002442, 0.0], 'tn_count': [676341.0, 0.0], 'tp_count': [0.0, 8653.0]}, >>> ] >>> thresh_bins = np.linspace(0, 1, 4) >>> combo = Measures.combine(tocombine, thresh_bins=thresh_bins).reconstruct() >>> print('tocombine = {}'.format(ub.repr2(tocombine, nl=2))) >>> print('thresh_bins = {!r}'.format(thresh_bins)) >>> print(ub.repr2(combo.__json__(), nl=1)) >>> for thresh_bins in [4096, 1]: >>> combo = Measures.combine(tocombine, thresh_bins=thresh_bins).reconstruct() >>> print('thresh_bins = {!r}'.format(thresh_bins)) >>> print('combo = {}'.format(ub.repr2(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> for precision in [6, 5, 2]: >>> combo = Measures.combine(tocombine, precision=precision).reconstruct() >>> print('precision = {!r}'.format(precision)) >>> print('combo = {}'.format(ub.repr2(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> for growth in [None, 'max', 'log', 'root', 'half']: >>> combo = Measures.combine(tocombine, growth=growth).reconstruct() >>> print('growth = {!r}'.format(growth)) >>> print('combo = {}'.format(ub.repr2(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds'])))
- kwcoco.metrics.confusion_measures.reversable_diff(arr, assume_sorted=1, reverse=False)[source]¶
Does a reversable array difference operation.
This will be used to find positions where accumulation happened in confusion count array.
- class kwcoco.metrics.confusion_measures.PerClass_Measures(cx_to_info)[source]¶
-
- draw(key='mcc', prefix='', **kw)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors # NOQA >>> cfsn_vecs = ConfusionVectors.demo() >>> ovr_cfsn = cfsn_vecs.binarize_ovr(keyby='name') >>> self = ovr_cfsn.measures()['perclass'] >>> self.draw('mcc', doclf=True, fnum=1) >>> self.draw('pr', doclf=1, fnum=2) >>> self.draw('roc', doclf=1, fnum=3)
- summary_plot(fnum=1, title='', subplots='auto')[source]¶
CommandLine
python ~/code/kwcoco/kwcoco/metrics/confusion_measures.py PerClass_Measures.summary_plot --show
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> n_fp=(0, 1), n_fn=(0, 3), nimgs=32, nboxes=(0, 32), >>> classes=3, rng=0, newstyle=1, box_noise=0.7, cls_noise=0.2, score_noise=0.3, with_probs=False) >>> cfsn_vecs = dmet.confusion_vectors() >>> ovr_cfsn = cfsn_vecs.binarize_ovr(keyby='name', ignore_classes=['vector', 'raster']) >>> self = ovr_cfsn.measures()['perclass'] >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> import seaborn as sns >>> sns.set() >>> self.summary_plot(title='demo summary_plot ovr', subplots=['pr', 'roc']) >>> kwplot.show_if_requested() >>> self.summary_plot(title='demo summary_plot ovr', subplots=['mcc', 'acc'], fnum=2)
- class kwcoco.metrics.confusion_measures.MeasureCombiner(precision=None, growth=None, thresh_bins=None)[source]¶
Bases:
object
Helper to iteravely combine binary measures generated by some process
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> from kwcoco.metrics.confusion_vectors import BinaryConfusionVectors >>> rng = kwarray.ensure_rng(0) >>> bin_combiner = MeasureCombiner(growth='max') >>> for _ in range(80): >>> bin_cfsn_vecs = BinaryConfusionVectors.demo(n=rng.randint(40, 50), rng=rng, p_true=0.2, p_error=0.4, p_miss=0.6) >>> bin_measures = bin_cfsn_vecs.measures() >>> bin_combiner.submit(bin_measures) >>> combined = bin_combiner.finalize() >>> print('combined = {!r}'.format(combined))
- property queue_size¶
- class kwcoco.metrics.confusion_measures.OneVersusRestMeasureCombiner(precision=None, growth=None, thresh_bins=None)[source]¶
Bases:
object
Helper to iteravely combine ovr measures generated by some process
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> from kwcoco.metrics.confusion_vectors import OneVsRestConfusionVectors >>> rng = kwarray.ensure_rng(0) >>> ovr_combiner = OneVersusRestMeasureCombiner(growth='max') >>> for _ in range(80): >>> ovr_cfsn_vecs = OneVsRestConfusionVectors.demo() >>> ovr_measures = ovr_cfsn_vecs.measures() >>> ovr_combiner.submit(ovr_measures) >>> combined = ovr_combiner.finalize() >>> print('combined = {!r}'.format(combined))
Classes that store raw confusion vectors, which can be accumulated into confusion measures.
- class kwcoco.metrics.confusion_vectors.ConfusionVectors(data, classes, probs=None)[source]¶
Bases:
NiceRepr
Stores information used to construct a confusion matrix. This includes corresponding vectors of predicted labels, true labels, sample weights, etc…
- Variables
data (kwarray.DataFrameArray) – should at least have keys true, pred, weight
classes (Sequence | CategoryTree) – list of category names or category graph
probs (ndarray, optional) – probabilities for each class
Example
>>> # xdoctest: IGNORE_WANT >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors() >>> print(cfsn_vecs.data._pandas()) pred true score weight iou txs pxs gid 0 2 2 10.0000 1.0000 1.0000 0 4 0 1 2 2 7.5025 1.0000 1.0000 1 3 0 2 1 1 5.0050 1.0000 1.0000 2 2 0 3 3 -1 2.5075 1.0000 -1.0000 -1 1 0 4 2 -1 0.0100 1.0000 -1.0000 -1 0 0 5 -1 2 0.0000 1.0000 -1.0000 3 -1 0 6 -1 2 0.0000 1.0000 -1.0000 4 -1 0 7 2 2 10.0000 1.0000 1.0000 0 5 1 8 2 2 8.0020 1.0000 1.0000 1 4 1 9 1 1 6.0040 1.0000 1.0000 2 3 1 .. ... ... ... ... ... ... ... ... 62 -1 2 0.0000 1.0000 -1.0000 7 -1 7 63 -1 3 0.0000 1.0000 -1.0000 8 -1 7 64 -1 1 0.0000 1.0000 -1.0000 9 -1 7 65 1 -1 10.0000 1.0000 -1.0000 -1 0 8 66 1 1 0.0100 1.0000 1.0000 0 1 8 67 3 -1 10.0000 1.0000 -1.0000 -1 3 9 68 2 2 6.6700 1.0000 1.0000 0 2 9 69 2 2 3.3400 1.0000 1.0000 1 1 9 70 3 -1 0.0100 1.0000 -1.0000 -1 0 9 71 -1 2 0.0000 1.0000 -1.0000 2 -1 9
>>> # xdoctest: +REQUIRES(--show) >>> # xdoctest: +REQUIRES(module:pandas) >>> import kwplot >>> kwplot.autompl() >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors >>> cfsn_vecs = ConfusionVectors.demo( >>> nimgs=128, nboxes=(0, 10), n_fp=(0, 3), n_fn=(0, 3), classes=3) >>> cx_to_binvecs = cfsn_vecs.binarize_ovr() >>> measures = cx_to_binvecs.measures()['perclass'] >>> print('measures = {!r}'.format(measures)) measures = <PerClass_Measures({ 'cat_1': <Measures({'ap': 0.227, 'auc': 0.507, 'catname': cat_1, 'max_f1': f1=0.45@0.47, 'nsupport': 788.000})>, 'cat_2': <Measures({'ap': 0.288, 'auc': 0.572, 'catname': cat_2, 'max_f1': f1=0.51@0.43, 'nsupport': 788.000})>, 'cat_3': <Measures({'ap': 0.225, 'auc': 0.484, 'catname': cat_3, 'max_f1': f1=0.46@0.40, 'nsupport': 788.000})>, }) at 0x7facf77bdfd0> >>> kwplot.figure(fnum=1, doclf=True) >>> measures.draw(key='pr', fnum=1, pnum=(1, 3, 1)) >>> measures.draw(key='roc', fnum=1, pnum=(1, 3, 2)) >>> measures.draw(key='mcc', fnum=1, pnum=(1, 3, 3)) ...
- classmethod demo(**kw)[source]¶
- Parameters
**kwargs – See
kwcoco.metrics.DetectionMetrics.demo()
- Returns
ConfusionVectors
Example
>>> cfsn_vecs = ConfusionVectors.demo() >>> print('cfsn_vecs = {!r}'.format(cfsn_vecs)) >>> cx_to_binvecs = cfsn_vecs.binarize_ovr() >>> print('cx_to_binvecs = {!r}'.format(cx_to_binvecs))
- classmethod from_arrays(true, pred=None, score=None, weight=None, probs=None, classes=None)[source]¶
Construct confusion vector data structure from component arrays
Example
>>> # xdoctest: +REQUIRES(module:pandas) >>> import kwarray >>> classes = ['person', 'vehicle', 'object'] >>> rng = kwarray.ensure_rng(0) >>> true = (rng.rand(10) * len(classes)).astype(int) >>> probs = rng.rand(len(true), len(classes)) >>> cfsn_vecs = ConfusionVectors.from_arrays(true=true, probs=probs, classes=classes) >>> cfsn_vecs.confusion_matrix() pred person vehicle object real person 0 0 0 vehicle 2 4 1 object 2 1 0
- confusion_matrix(compress=False)[source]¶
Builds a confusion matrix from the confusion vectors.
- Parameters
compress (bool, default=False) – if True removes rows / columns with no entries
- Returns
- cmthe labeled confusion matrix
- (Note: we should write a efficient replacement for
this use case. #remove_pandas)
- Return type
pd.DataFrame
CommandLine
xdoctest -m kwcoco.metrics.confusion_vectors ConfusionVectors.confusion_matrix
Example
>>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), n_fn=(0, 1), classes=3, cls_noise=.2) >>> cfsn_vecs = dmet.confusion_vectors() >>> cm = cfsn_vecs.confusion_matrix() ... >>> print(cm.to_string(float_format=lambda x: '%.2f' % x)) pred background cat_1 cat_2 cat_3 real background 0.00 1.00 2.00 3.00 cat_1 3.00 12.00 0.00 0.00 cat_2 3.00 0.00 14.00 0.00 cat_3 2.00 0.00 0.00 17.00
- binarize_classless(negative_classes=None)[source]¶
Creates a binary representation useful for measuring the performance of detectors. It is assumed that scores of “positive” classes should be high and “negative” clases should be low.
- Parameters
negative_classes (List[str | int]) – list of negative class names or idxs, by default chooses any class with a true class index of -1. These classes should ideally have low scores.
- Returns
BinaryConfusionVectors
Note
The “classlessness” of this depends on the compat=”all” argument being used when constructing confusion vectors, otherwise it becomes something like a macro-average because the class information was used in deciding which true and predicted boxes were allowed to match.
Example
>>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), n_fn=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors() >>> class_idxs = list(dmet.classes.node_to_idx.values()) >>> binvecs = cfsn_vecs.binarize_classless()
- binarize_ovr(mode=1, keyby='name', ignore_classes={'ignore'}, approx=False)[source]¶
Transforms cfsn_vecs into one-vs-rest BinaryConfusionVectors for each category.
- Parameters
mode (int, default=1) – 0 for heirarchy aware or 1 for voc like. MODE 0 IS PROBABLY BROKEN
keyby (int | str) – can be cx or name
ignore_classes (Set[str]) – category names to ignore
approx (bool, default=0) – if True try and approximate missing scores otherwise assume they are irrecoverable and use -inf
- Returns
- which behaves like
Dict[int, BinaryConfusionVectors]: cx_to_binvecs
- Return type
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> cfsn_vecs = ConfusionVectors.demo() >>> print('cfsn_vecs = {!r}'.format(cfsn_vecs)) >>> catname_to_binvecs = cfsn_vecs.binarize_ovr(keyby='name') >>> print('catname_to_binvecs = {!r}'.format(catname_to_binvecs))
cfsn_vecs.data.pandas() catname_to_binvecs.cx_to_binvecs[‘class_1’].data.pandas()
Note
- class kwcoco.metrics.confusion_vectors.OneVsRestConfusionVectors(cx_to_binvecs, classes)[source]¶
Bases:
NiceRepr
Container for multiple one-vs-rest binary confusion vectors
- Variables
cx_to_binvecs –
classes –
Example
>>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors() >>> self = cfsn_vecs.binarize_ovr(keyby='name') >>> print('self = {!r}'.format(self))
- classmethod demo()[source]¶
- Parameters
**kwargs – See
kwcoco.metrics.DetectionMetrics.demo()
- Returns
ConfusionVectors
- measures(stabalize_thresh=7, fp_cutoff=None, monotonic_ppv=True, ap_method='pycocotools')[source]¶
Creates binary confusion measures for every one-versus-rest category.
- Parameters
stabalize_thresh (int, default=7) – if fewer than this many data points inserts dummy stabilization data so curves can still be drawn.
fp_cutoff (int, default=None) – maximum number of false positives in the truncated roc curves.
None
is equivalent tofloat('inf')
monotonic_ppv (bool, default=True) – if True ensures that precision is always increasing as recall decreases. This is done in pycocotools scoring, but I’m not sure its a good idea.
Example
>>> self = OneVsRestConfusionVectors.demo() >>> thresh_result = self.measures()['perclass']
- class kwcoco.metrics.confusion_vectors.BinaryConfusionVectors(data, cx=None, classes=None)[source]¶
Bases:
NiceRepr
Stores information about a binary classification problem. This is always with respect to a specific class, which is given by cx and classes.
- The data DataFrameArray must contain
is_true - if the row is an instance of class classes[cx] pred_score - the predicted probability of class classes[cx], and weight - sample weight of the example
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> self = BinaryConfusionVectors.demo(n=10) >>> print('self = {!r}'.format(self)) >>> print('measures = {}'.format(ub.repr2(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=0) >>> print('measures = {}'.format(ub.repr2(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=1) >>> print('measures = {}'.format(ub.repr2(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=2) >>> print('measures = {}'.format(ub.repr2(self.measures())))
- classmethod demo(n=10, p_true=0.5, p_error=0.2, p_miss=0.0, rng=None)[source]¶
Create random data for tests
- Parameters
n (int) – number of rows
p_true (float) – fraction of real positive cases
p_error (float) – probability of making a recoverable mistake
p_miss (float) – probability of making a unrecoverable mistake
rng (int | RandomState) – random seed / state
- Returns
BinaryConfusionVectors
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> cfsn = BinaryConfusionVectors.demo(n=1000, p_error=0.1, p_miss=0.1) >>> measures = cfsn.measures() >>> print('measures = {}'.format(ub.repr2(measures, nl=1))) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.figure(fnum=1, pnum=(1, 2, 1)) >>> measures.draw('pr') >>> kwplot.figure(fnum=1, pnum=(1, 2, 2)) >>> measures.draw('roc')
- property catname¶
- measures(stabalize_thresh=7, fp_cutoff=None, monotonic_ppv=True, ap_method='pycocotools')[source]¶
Get statistics (F1, G1, MCC) versus thresholds
- Parameters
stabalize_thresh (int, default=7) – if fewer than this many data points inserts dummy stabalization data so curves can still be drawn.
fp_cutoff (int, default=None) – maximum number of false positives in the truncated roc curves.
None
is equivalent tofloat('inf')
monotonic_ppv (bool, default=True) – if True ensures that precision is always increasing as recall decreases. This is done in pycocotools scoring, but I’m not sure its a good idea.
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> self = BinaryConfusionVectors.demo(n=0) >>> print('measures = {}'.format(ub.repr2(self.measures()))) >>> self = BinaryConfusionVectors.demo(n=1, p_true=0.5, p_error=0.5) >>> print('measures = {}'.format(ub.repr2(self.measures()))) >>> self = BinaryConfusionVectors.demo(n=3, p_true=0.5, p_error=0.5) >>> print('measures = {}'.format(ub.repr2(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=100, p_true=0.5, p_error=0.5, p_miss=0.3) >>> print('measures = {}'.format(ub.repr2(self.measures()))) >>> print('measures = {}'.format(ub.repr2(ub.odict(self.measures()))))
References
https://en.wikipedia.org/wiki/Confusion_matrix https://en.wikipedia.org/wiki/Precision_and_recall https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
- class kwcoco.metrics.detect_metrics.DetectionMetrics(classes=None)[source]¶
Bases:
NiceRepr
Object that computes associations between detections and can convert them into sklearn-compatible representations for scoring.
- Variables
gid_to_true_dets (Dict) – maps image ids to truth
gid_to_pred_dets (Dict) – maps image ids to predictions
classes (CategoryTree) – category coder
Example
>>> dmet = DetectionMetrics.demo( >>> nimgs=100, nboxes=(0, 3), n_fp=(0, 1), classes=8, score_noise=0.9, hacked=False) >>> print(dmet.score_kwcoco(bias=0, compat='mutex', prioritize='iou')['mAP']) ... >>> # NOTE: IN GENERAL NETHARN AND VOC ARE NOT THE SAME >>> print(dmet.score_voc(bias=0)['mAP']) 0.8582... >>> #print(dmet.score_coco()['mAP'])
- classmethod from_coco(true_coco, pred_coco, gids=None, verbose=0)[source]¶
Create detection metrics from two coco files representing the truth and predictions.
- Parameters
true_coco (kwcoco.CocoDataset)
pred_coco (kwcoco.CocoDataset)
Example
>>> import kwcoco >>> from kwcoco.demo.perterb import perterb_coco >>> true_coco = kwcoco.CocoDataset.demo('shapes') >>> perterbkw = dict(box_noise=0.5, cls_noise=0.5, score_noise=0.5) >>> pred_coco = perterb_coco(true_coco, **perterbkw) >>> self = DetectionMetrics.from_coco(true_coco, pred_coco) >>> self.score_voc()
- add_predictions(pred_dets, imgname=None, gid=None)[source]¶
Register/Add predicted detections for an image
- Parameters
pred_dets (kwimage.Detections) – predicted detections
imgname (str) – a unique string to identify the image
gid (int | None) – the integer image id if known
- add_truth(true_dets, imgname=None, gid=None)[source]¶
Register/Add groundtruth detections for an image
- Parameters
true_dets (kwimage.Detections) – groundtruth
imgname (str) – a unique string to identify the image
gid (int | None) – the integer image id if known
- confusion_vectors(iou_thresh=0.5, bias=0, gids=None, compat='mutex', prioritize='iou', ignore_classes='ignore', background_class=NoParam, verbose='auto', workers=0, track_probs='try', max_dets=None)[source]¶
Assigns predicted boxes to the true boxes so we can transform the detection problem into a classification problem for scoring.
- Parameters
iou_thresh (float | List[float], default=0.5) – bounding box overlap iou threshold required for assignment if a list, then return type is a dict
bias (float, default=0.0) – for computing bounding box overlap, either 1 or 0
gids (List[int], default=None) – which subset of images ids to compute confusion metrics on. If not specified all images are used.
compat (str, default=’all’) – can be (‘ancestors’ | ‘mutex’ | ‘all’). determines which pred boxes are allowed to match which true boxes. If ‘mutex’, then pred boxes can only match true boxes of the same class. If ‘ancestors’, then pred boxes can match true boxes that match or have a coarser label. If ‘all’, then any pred can match any true, regardless of its category label.
prioritize (str, default=’iou’) – can be (‘iou’ | ‘class’ | ‘correct’) determines which box to assign to if mutiple true boxes overlap a predicted box. if prioritize is iou, then the true box with maximum iou (above iou_thresh) will be chosen. If prioritize is class, then it will prefer matching a compatible class above a higher iou. If prioritize is correct, then ancestors of the true class are preferred over descendents of the true class, over unreleated classes.
ignore_classes (set | str, default={‘ignore’}) – class names indicating ignore regions
background_class (str, default=ub.NoParam) – Name of the background class. If unspecified we try to determine it with heuristics. A value of None means there is no background class.
verbose (int | str, default=’auto’) – verbosity flag. In auto mode, verbose=1 if len(gids) > 1000.
workers (int, default=0) – number of parallel assignment processes
track_probs (str, default=’try’) – can be ‘try’, ‘force’, or False. if truthy, we assume probabilities for multiple classes are available.
- Returns
kwcoco.metrics.confusion_vectors.ConfusionVectors | Dict[float, kwcoco.metrics.confusion_vectors.ConfusionVectors]
Example
>>> dmet = DetectionMetrics.demo(nimgs=30, classes=3, >>> nboxes=10, n_fp=3, box_noise=10, >>> with_probs=False) >>> iou_to_cfsn = dmet.confusion_vectors(iou_thresh=[0.3, 0.5, 0.9]) >>> for t, cfsn in iou_to_cfsn.items(): >>> print('t = {!r}'.format(t)) ... print(cfsn.binarize_ovr().measures()) ... print(cfsn.binarize_classless().measures())
- score_kwcoco(iou_thresh=0.5, bias=0, gids=None, compat='all', prioritize='iou')[source]¶
our scoring method
- score_voc(iou_thresh=0.5, bias=1, method='voc2012', gids=None, ignore_classes='ignore')[source]¶
score using voc method
Example
>>> dmet = DetectionMetrics.demo( >>> nimgs=100, nboxes=(0, 3), n_fp=(0, 1), classes=8, >>> score_noise=.5) >>> print(dmet.score_voc()['mAP']) 0.9399...
- score_pycocotools(with_evaler=False, with_confusion=False, verbose=0, iou_thresholds=None)[source]¶
score using ms-coco method
- Returns
dictionary with pct info
- Return type
Dict
Example
>>> # xdoctest: +REQUIRES(module:pycocotools) >>> from kwcoco.metrics.detect_metrics import * >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 3), n_fn=(0, 1), n_fp=(0, 1), classes=8, with_probs=False) >>> pct_info = dmet.score_pycocotools(verbose=1, >>> with_evaler=True, >>> with_confusion=True, >>> iou_thresholds=[0.5, 0.9]) >>> evaler = pct_info['evaler'] >>> iou_to_cfsn_vecs = pct_info['iou_to_cfsn_vecs'] >>> for iou_thresh in iou_to_cfsn_vecs.keys(): >>> print('iou_thresh = {!r}'.format(iou_thresh)) >>> cfsn_vecs = iou_to_cfsn_vecs[iou_thresh] >>> ovr_measures = cfsn_vecs.binarize_ovr().measures() >>> print('ovr_measures = {}'.format(ub.repr2(ovr_measures, nl=1, precision=4)))
Note
by default pycocotools computes average precision as the literal average of computed precisions at 101 uniformly spaced recall thresholds.
pycocoutils seems to only allow predictions with the same category as the truth to match those truth objects. This should be the same as calling dmet.confusion_vectors with compat = mutex
pycocoutils does not take into account the fact that each box often has a score for each category.
pycocoutils will be incorrect if any annotation has an id of 0
a major difference in the way kwcoco scores versus pycocoutils is the calculation of AP. The assignment between truth and predicted detections produces similar enough results. Given our confusion vectors we use the scikit-learn definition of AP, whereas pycocoutils seems to compute precision and recall — more or less correctly — but then it resamples the precision at various specified recall thresholds (in the accumulate function, specifically how pr is resampled into the q array). This can lead to a large difference in reported scores.
pycocoutils also smooths out the precision such that it is monotonic decreasing, which might not be the best idea.
pycocotools area ranges are inclusive on both ends, that means the “small” and “medium” truth selections do overlap somewhat.
- score_coco(with_evaler=False, with_confusion=False, verbose=0, iou_thresholds=None)¶
score using ms-coco method
- Returns
dictionary with pct info
- Return type
Dict
Example
>>> # xdoctest: +REQUIRES(module:pycocotools) >>> from kwcoco.metrics.detect_metrics import * >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 3), n_fn=(0, 1), n_fp=(0, 1), classes=8, with_probs=False) >>> pct_info = dmet.score_pycocotools(verbose=1, >>> with_evaler=True, >>> with_confusion=True, >>> iou_thresholds=[0.5, 0.9]) >>> evaler = pct_info['evaler'] >>> iou_to_cfsn_vecs = pct_info['iou_to_cfsn_vecs'] >>> for iou_thresh in iou_to_cfsn_vecs.keys(): >>> print('iou_thresh = {!r}'.format(iou_thresh)) >>> cfsn_vecs = iou_to_cfsn_vecs[iou_thresh] >>> ovr_measures = cfsn_vecs.binarize_ovr().measures() >>> print('ovr_measures = {}'.format(ub.repr2(ovr_measures, nl=1, precision=4)))
Note
by default pycocotools computes average precision as the literal average of computed precisions at 101 uniformly spaced recall thresholds.
pycocoutils seems to only allow predictions with the same category as the truth to match those truth objects. This should be the same as calling dmet.confusion_vectors with compat = mutex
pycocoutils does not take into account the fact that each box often has a score for each category.
pycocoutils will be incorrect if any annotation has an id of 0
a major difference in the way kwcoco scores versus pycocoutils is the calculation of AP. The assignment between truth and predicted detections produces similar enough results. Given our confusion vectors we use the scikit-learn definition of AP, whereas pycocoutils seems to compute precision and recall — more or less correctly — but then it resamples the precision at various specified recall thresholds (in the accumulate function, specifically how pr is resampled into the q array). This can lead to a large difference in reported scores.
pycocoutils also smooths out the precision such that it is monotonic decreasing, which might not be the best idea.
pycocotools area ranges are inclusive on both ends, that means the “small” and “medium” truth selections do overlap somewhat.
- classmethod demo(**kwargs)[source]¶
Creates random true boxes and predicted boxes that have some noisy offset from the truth.
- Kwargs:
- classes (int):
class list or the number of foreground classes. Defaults to 1.
nimgs (int): number of images in the coco datasts. Defaults to 1.
nboxes (int): boxes per image. Defaults to 1.
n_fp (int): number of false positives. Defaults to 0.
- n_fn (int):
number of false negatives. Defaults to 0.
- box_noise (float):
std of a normal distribution used to perterb both box location and box size. Defaults to 0.
- cls_noise (float):
probability that a class label will change. Must be within 0 and 1. Defaults to 0.
- anchors (ndarray):
used to create random boxes. Defaults to None.
- null_pred (bool):
if True, predicted classes are returned as null, which means only localization scoring is suitable. Defaults to 0.
- with_probs (bool):
if True, includes per-class probabilities with predictions Defaults to 1.
CommandLine
xdoctest -m kwcoco.metrics.detect_metrics DetectionMetrics.demo:2 --show
Example
>>> kwargs = {} >>> # Seed the RNG >>> kwargs['rng'] = 0 >>> # Size parameters determine how big the data is >>> kwargs['nimgs'] = 5 >>> kwargs['nboxes'] = 7 >>> kwargs['classes'] = 11 >>> # Noise parameters perterb predictions further from the truth >>> kwargs['n_fp'] = 3 >>> kwargs['box_noise'] = 0.1 >>> kwargs['cls_noise'] = 0.5 >>> dmet = DetectionMetrics.demo(**kwargs) >>> print('dmet.classes = {}'.format(dmet.classes)) dmet.classes = <CategoryTree(nNodes=12, maxDepth=3, maxBreadth=4...)> >>> # Can grab kwimage.Detection object for any image >>> print(dmet.true_detections(gid=0)) <Detections(4)> >>> print(dmet.pred_detections(gid=0)) <Detections(7)>
Example
>>> # Test case with null predicted categories >>> dmet = DetectionMetrics.demo(nimgs=30, null_pred=1, classes=3, >>> nboxes=10, n_fp=3, box_noise=0.1, >>> with_probs=False) >>> dmet.gid_to_pred_dets[0].data >>> dmet.gid_to_true_dets[0].data >>> cfsn_vecs = dmet.confusion_vectors() >>> binvecs_ovr = cfsn_vecs.binarize_ovr() >>> binvecs_per = cfsn_vecs.binarize_classless() >>> measures_per = binvecs_per.measures() >>> measures_ovr = binvecs_ovr.measures() >>> print('measures_per = {!r}'.format(measures_per)) >>> print('measures_ovr = {!r}'.format(measures_ovr)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> measures_ovr['perclass'].draw(key='pr', fnum=2)
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> n_fp=(0, 1), n_fn=(0, 1), nimgs=32, nboxes=(0, 16), >>> classes=3, rng=0, newstyle=1, box_noise=0.5, cls_noise=0.0, score_noise=0.3, with_probs=False) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> summary = dmet.summarize(plot=True, title='DetectionMetrics summary demo', with_ovr=True, with_bin=False) >>> summary['bin_measures'] >>> kwplot.show_if_requested()
- summarize(out_dpath=None, plot=False, title='', with_bin='auto', with_ovr='auto')[source]¶
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> n_fp=(0, 128), n_fn=(0, 4), nimgs=512, nboxes=(0, 32), >>> classes=3, rng=0) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> dmet.summarize(plot=True, title='DetectionMetrics summary demo') >>> kwplot.show_if_requested()
- kwcoco.metrics.detect_metrics.pycocotools_confusion_vectors(dmet, evaler, iou_thresh=0.5, verbose=0)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:pycocotools) >>> from kwcoco.metrics.detect_metrics import * >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 3), n_fn=(0, 1), n_fp=(0, 1), classes=8, with_probs=False) >>> coco_scores = dmet.score_pycocotools(with_evaler=True) >>> evaler = coco_scores['evaler'] >>> cfsn_vecs = pycocotools_confusion_vectors(dmet, evaler, verbose=1)
- kwcoco.metrics.drawing.draw_perclass_roc(cx_to_info, classes=None, prefix='', fnum=1, fp_axis='count', **kw)[source]¶
- Parameters
cx_to_info (kwcoco.metrics.confusion_measures.PerClass_Measures | Dict)
fp_axis (str) – can be count or rate
- kwcoco.metrics.drawing.concice_si_display(val, eps=1e-08, precision=2, si_thresh=4)[source]¶
Display numbers in scientific notation if above a threshold
- Parameters
eps (float) – threshold to be formated as an integer if other integer conditions hold.
precision (int) – maximum significant digits (might print less)
si_thresh (int) – If the number is less than 10^{si_thresh}, then it will be printed as an integer if it is within eps of an integer.
References
https://docs.python.org/2/library/stdtypes.html#string-formatting-operations
Example
>>> grid = { >>> 'sign': [1, -1], >>> 'exp': [1, -1], >>> 'big_part': [0, 32132e3, 4000000032], >>> 'med_part': [0, 0.5, 0.9432, 0.000043, 0.01, 1, 2], >>> 'small_part': [0, 1321e-3, 43242e-11], >>> } >>> for kw in ub.named_product(grid): >>> sign = kw.pop('sign') >>> exp = kw.pop('exp') >>> raw = (sum(map(float, kw.values()))) >>> val = sign * raw ** exp if raw != 0 else sign * raw >>> print('{:>20} - {}'.format(concice_si_display(val), val)) >>> from kwcoco.metrics.drawing import * # NOQA >>> print(concice_si_display(40000000432432)) >>> print(concice_si_display(473243280432890)) >>> print(concice_si_display(473243284289)) >>> print(concice_si_display(473243289)) >>> print(concice_si_display(4739)) >>> print(concice_si_display(473)) >>> print(concice_si_display(0.432432)) >>> print(concice_si_display(0.132432)) >>> print(concice_si_display(1.0000043)) >>> print(concice_si_display(01.00000000000000000000000000043))
- kwcoco.metrics.drawing.draw_perclass_prcurve(cx_to_info, classes=None, prefix='', fnum=1, **kw)[source]¶
- Parameters
cx_to_info (kwcoco.metrics.confusion_measures.PerClass_Measures | Dict)
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> from kwcoco.metrics.drawing import * # NOQA >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=3, nboxes=(0, 10), n_fp=(0, 3), n_fn=(0, 2), classes=3, score_noise=0.1, box_noise=0.1, with_probs=False) >>> cfsn_vecs = dmet.confusion_vectors() >>> print(cfsn_vecs.data.pandas()) >>> classes = cfsn_vecs.classes >>> cx_to_info = cfsn_vecs.binarize_ovr().measures()['perclass'] >>> print('cx_to_info = {}'.format(ub.repr2(cx_to_info, nl=1))) >>> import kwplot >>> kwplot.autompl() >>> draw_perclass_prcurve(cx_to_info, classes) >>> # xdoctest: +REQUIRES(--show) >>> kwplot.show_if_requested()
- kwcoco.metrics.drawing.draw_perclass_thresholds(cx_to_info, key='mcc', classes=None, prefix='', fnum=1, **kw)[source]¶
- Parameters
cx_to_info (kwcoco.metrics.confusion_measures.PerClass_Measures | Dict)
Note
Each category is inspected independently of one another, there is no notion of confusion.
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> from kwcoco.metrics.drawing import * # NOQA >>> from kwcoco.metrics import ConfusionVectors >>> cfsn_vecs = ConfusionVectors.demo() >>> classes = cfsn_vecs.classes >>> ovr_cfsn = cfsn_vecs.binarize_ovr(keyby='name') >>> cx_to_info = ovr_cfsn.measures()['perclass'] >>> import kwplot >>> kwplot.autompl() >>> key = 'mcc' >>> draw_perclass_thresholds(cx_to_info, key, classes) >>> # xdoctest: +REQUIRES(--show) >>> kwplot.show_if_requested()
- kwcoco.metrics.drawing.draw_roc(info, prefix='', fnum=1, **kw)[source]¶
- Parameters
info (Measures | Dict)
Note
There needs to be enough negative examples for using ROC to make any sense!
Example
>>> # xdoctest: +REQUIRES(module:kwplot, module:seaborn) >>> from kwcoco.metrics.drawing import * # NOQA >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo(nimgs=30, null_pred=1, classes=3, >>> nboxes=10, n_fp=10, box_noise=0.3, >>> with_probs=False) >>> dmet.true_detections(0).data >>> cfsn_vecs = dmet.confusion_vectors(compat='mutex', prioritize='iou', bias=0) >>> print(cfsn_vecs.data._pandas().sort_values('score')) >>> classes = cfsn_vecs.classes >>> info = ub.peek(cfsn_vecs.binarize_ovr().measures()['perclass'].values()) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> draw_roc(info) >>> kwplot.show_if_requested()
- kwcoco.metrics.drawing.draw_prcurve(info, prefix='', fnum=1, **kw)[source]¶
Draws a single pr curve.
- Parameters
info (Measures | Dict)
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors()
>>> classes = cfsn_vecs.classes >>> info = cfsn_vecs.binarize_classless().measures() >>> import kwplot >>> kwplot.autompl() >>> draw_prcurve(info) >>> # xdoctest: +REQUIRES(--show) >>> kwplot.show_if_requested()
- kwcoco.metrics.drawing.draw_threshold_curves(info, keys=None, prefix='', fnum=1, **kw)[source]¶
- Parameters
info (Measures | Dict)
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> import sys, ubelt >>> sys.path.append(ubelt.expandpath('~/code/kwcoco')) >>> from kwcoco.metrics.drawing import * # NOQA >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors() >>> info = cfsn_vecs.binarize_classless().measures() >>> keys = None >>> import kwplot >>> kwplot.autompl() >>> draw_threshold_curves(info, keys) >>> # xdoctest: +REQUIRES(--show) >>> kwplot.show_if_requested()
- kwcoco.metrics.functional.fast_confusion_matrix(y_true, y_pred, n_labels, sample_weight=None)[source]¶
faster version of sklearn confusion matrix that avoids the expensive checks and label rectification
- Parameters
y_true (ndarray[Any, Int]) – ground truth class label for each sample
y_pred (ndarray[Any, Int]) – predicted class label for each sample
n_labels (int) – number of labels
sample_weight (ndarray) – weight of each sample Extended typing
ndarray[Any, Int | Float]
- Returns
matrix where rows represent real and cols represent pred and the value at each cell is the total amount of weight Extended typing
ndarray[Shape['*, *'], Int64 | Float64]
- Return type
ndarray
Example
>>> y_true = np.array([0, 0, 0, 0, 1, 1, 1, 0, 0, 1]) >>> y_pred = np.array([0, 0, 0, 0, 0, 0, 0, 1, 1, 1]) >>> fast_confusion_matrix(y_true, y_pred, 2) array([[4, 2], [3, 1]]) >>> fast_confusion_matrix(y_true, y_pred, 2).ravel() array([4, 2, 3, 1])
Faster pure-python versions of sklearn functions that avoid expensive checks and label rectifications. It is assumed that all labels are consecutive non-negative integers.
- kwcoco.metrics.sklearn_alts.confusion_matrix(y_true, y_pred, n_labels=None, labels=None, sample_weight=None)[source]¶
faster version of sklearn confusion matrix that avoids the expensive checks and label rectification
Runs in about 0.7ms
- Returns
matrix where rows represent real and cols represent pred
- Return type
ndarray
Example
>>> y_true = np.array([0, 0, 0, 0, 1, 1, 1, 0, 0, 1]) >>> y_pred = np.array([0, 0, 0, 0, 0, 0, 0, 1, 1, 1]) >>> confusion_matrix(y_true, y_pred, 2) array([[4, 2], [3, 1]]) >>> confusion_matrix(y_true, y_pred, 2).ravel() array([4, 2, 3, 1])
- Benchmark:
>>> # xdoctest: +SKIP >>> import ubelt as ub >>> y_true = np.random.randint(0, 2, 10000) >>> y_pred = np.random.randint(0, 2, 10000) >>> n = 1000 >>> for timer in ub.Timerit(n, bestof=10, label='py-time'): >>> sample_weight = [1] * len(y_true) >>> confusion_matrix(y_true, y_pred, 2, sample_weight=sample_weight) >>> for timer in ub.Timerit(n, bestof=10, label='np-time'): >>> sample_weight = np.ones(len(y_true), dtype=int) >>> confusion_matrix(y_true, y_pred, 2, sample_weight=sample_weight)
- class kwcoco.metrics.voc_metrics.VOC_Metrics(classes=None)[source]¶
Bases:
NiceRepr
API to compute object detection scores using Pascal VOC evaluation method.
To use, add true and predicted detections for each image and then run the
VOC_Metrics.score()
function.- Variables
recs (Dict[int, List[dict]) – true boxes for each image. maps image ids to a list of records within that image. Each record is a tlbr bbox, a difficult flag, and a class name.
cx_to_lines (Dict[int, List]) – VOC formatted prediction preditions. mapping from class index to all predictions for that category. Each “line” is a list of [[<imgid>, <score>, <tl_x>, <tl_y>, <br_x>, <br_y>]].
- score(iou_thresh=0.5, bias=1, method='voc2012')[source]¶
Compute VOC scores for every category
Example
>>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> from kwcoco.metrics.voc_metrics import * # NOQA >>> dmet = DetectionMetrics.demo( >>> nimgs=1, nboxes=(0, 100), n_fp=(0, 30), n_fn=(0, 30), classes=2, score_noise=0.9) >>> self = VOC_Metrics(classes=dmet.classes) >>> self.add_truth(dmet.true_detections(0), 0) >>> self.add_predictions(dmet.pred_detections(0), 0) >>> voc_scores = self.score() >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.figure(fnum=1, doclf=True) >>> voc_scores['perclass'].draw()
kwplot.figure(fnum=2) dmet.true_detections(0).draw(color=’green’, labels=None) dmet.pred_detections(0).draw(color=’blue’, labels=None) kwplot.autoplt().gca().set_xlim(0, 100) kwplot.autoplt().gca().set_ylim(0, 100)
Module contents¶
mkinit kwcoco.metrics -w –relative
- class kwcoco.metrics.BinaryConfusionVectors(data, cx=None, classes=None)[source]¶
Bases:
NiceRepr
Stores information about a binary classification problem. This is always with respect to a specific class, which is given by cx and classes.
- The data DataFrameArray must contain
is_true - if the row is an instance of class classes[cx] pred_score - the predicted probability of class classes[cx], and weight - sample weight of the example
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> self = BinaryConfusionVectors.demo(n=10) >>> print('self = {!r}'.format(self)) >>> print('measures = {}'.format(ub.repr2(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=0) >>> print('measures = {}'.format(ub.repr2(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=1) >>> print('measures = {}'.format(ub.repr2(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=2) >>> print('measures = {}'.format(ub.repr2(self.measures())))
- classmethod demo(n=10, p_true=0.5, p_error=0.2, p_miss=0.0, rng=None)[source]¶
Create random data for tests
- Parameters
n (int) – number of rows
p_true (float) – fraction of real positive cases
p_error (float) – probability of making a recoverable mistake
p_miss (float) – probability of making a unrecoverable mistake
rng (int | RandomState) – random seed / state
- Returns
BinaryConfusionVectors
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> cfsn = BinaryConfusionVectors.demo(n=1000, p_error=0.1, p_miss=0.1) >>> measures = cfsn.measures() >>> print('measures = {}'.format(ub.repr2(measures, nl=1))) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.figure(fnum=1, pnum=(1, 2, 1)) >>> measures.draw('pr') >>> kwplot.figure(fnum=1, pnum=(1, 2, 2)) >>> measures.draw('roc')
- property catname¶
- measures(stabalize_thresh=7, fp_cutoff=None, monotonic_ppv=True, ap_method='pycocotools')[source]¶
Get statistics (F1, G1, MCC) versus thresholds
- Parameters
stabalize_thresh (int, default=7) – if fewer than this many data points inserts dummy stabalization data so curves can still be drawn.
fp_cutoff (int, default=None) – maximum number of false positives in the truncated roc curves.
None
is equivalent tofloat('inf')
monotonic_ppv (bool, default=True) – if True ensures that precision is always increasing as recall decreases. This is done in pycocotools scoring, but I’m not sure its a good idea.
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> self = BinaryConfusionVectors.demo(n=0) >>> print('measures = {}'.format(ub.repr2(self.measures()))) >>> self = BinaryConfusionVectors.demo(n=1, p_true=0.5, p_error=0.5) >>> print('measures = {}'.format(ub.repr2(self.measures()))) >>> self = BinaryConfusionVectors.demo(n=3, p_true=0.5, p_error=0.5) >>> print('measures = {}'.format(ub.repr2(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=100, p_true=0.5, p_error=0.5, p_miss=0.3) >>> print('measures = {}'.format(ub.repr2(self.measures()))) >>> print('measures = {}'.format(ub.repr2(ub.odict(self.measures()))))
References
https://en.wikipedia.org/wiki/Confusion_matrix https://en.wikipedia.org/wiki/Precision_and_recall https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
- class kwcoco.metrics.ConfusionVectors(data, classes, probs=None)[source]¶
Bases:
NiceRepr
Stores information used to construct a confusion matrix. This includes corresponding vectors of predicted labels, true labels, sample weights, etc…
- Variables
data (kwarray.DataFrameArray) – should at least have keys true, pred, weight
classes (Sequence | CategoryTree) – list of category names or category graph
probs (ndarray, optional) – probabilities for each class
Example
>>> # xdoctest: IGNORE_WANT >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors() >>> print(cfsn_vecs.data._pandas()) pred true score weight iou txs pxs gid 0 2 2 10.0000 1.0000 1.0000 0 4 0 1 2 2 7.5025 1.0000 1.0000 1 3 0 2 1 1 5.0050 1.0000 1.0000 2 2 0 3 3 -1 2.5075 1.0000 -1.0000 -1 1 0 4 2 -1 0.0100 1.0000 -1.0000 -1 0 0 5 -1 2 0.0000 1.0000 -1.0000 3 -1 0 6 -1 2 0.0000 1.0000 -1.0000 4 -1 0 7 2 2 10.0000 1.0000 1.0000 0 5 1 8 2 2 8.0020 1.0000 1.0000 1 4 1 9 1 1 6.0040 1.0000 1.0000 2 3 1 .. ... ... ... ... ... ... ... ... 62 -1 2 0.0000 1.0000 -1.0000 7 -1 7 63 -1 3 0.0000 1.0000 -1.0000 8 -1 7 64 -1 1 0.0000 1.0000 -1.0000 9 -1 7 65 1 -1 10.0000 1.0000 -1.0000 -1 0 8 66 1 1 0.0100 1.0000 1.0000 0 1 8 67 3 -1 10.0000 1.0000 -1.0000 -1 3 9 68 2 2 6.6700 1.0000 1.0000 0 2 9 69 2 2 3.3400 1.0000 1.0000 1 1 9 70 3 -1 0.0100 1.0000 -1.0000 -1 0 9 71 -1 2 0.0000 1.0000 -1.0000 2 -1 9
>>> # xdoctest: +REQUIRES(--show) >>> # xdoctest: +REQUIRES(module:pandas) >>> import kwplot >>> kwplot.autompl() >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors >>> cfsn_vecs = ConfusionVectors.demo( >>> nimgs=128, nboxes=(0, 10), n_fp=(0, 3), n_fn=(0, 3), classes=3) >>> cx_to_binvecs = cfsn_vecs.binarize_ovr() >>> measures = cx_to_binvecs.measures()['perclass'] >>> print('measures = {!r}'.format(measures)) measures = <PerClass_Measures({ 'cat_1': <Measures({'ap': 0.227, 'auc': 0.507, 'catname': cat_1, 'max_f1': f1=0.45@0.47, 'nsupport': 788.000})>, 'cat_2': <Measures({'ap': 0.288, 'auc': 0.572, 'catname': cat_2, 'max_f1': f1=0.51@0.43, 'nsupport': 788.000})>, 'cat_3': <Measures({'ap': 0.225, 'auc': 0.484, 'catname': cat_3, 'max_f1': f1=0.46@0.40, 'nsupport': 788.000})>, }) at 0x7facf77bdfd0> >>> kwplot.figure(fnum=1, doclf=True) >>> measures.draw(key='pr', fnum=1, pnum=(1, 3, 1)) >>> measures.draw(key='roc', fnum=1, pnum=(1, 3, 2)) >>> measures.draw(key='mcc', fnum=1, pnum=(1, 3, 3)) ...
- classmethod demo(**kw)[source]¶
- Parameters
**kwargs – See
kwcoco.metrics.DetectionMetrics.demo()
- Returns
ConfusionVectors
Example
>>> cfsn_vecs = ConfusionVectors.demo() >>> print('cfsn_vecs = {!r}'.format(cfsn_vecs)) >>> cx_to_binvecs = cfsn_vecs.binarize_ovr() >>> print('cx_to_binvecs = {!r}'.format(cx_to_binvecs))
- classmethod from_arrays(true, pred=None, score=None, weight=None, probs=None, classes=None)[source]¶
Construct confusion vector data structure from component arrays
Example
>>> # xdoctest: +REQUIRES(module:pandas) >>> import kwarray >>> classes = ['person', 'vehicle', 'object'] >>> rng = kwarray.ensure_rng(0) >>> true = (rng.rand(10) * len(classes)).astype(int) >>> probs = rng.rand(len(true), len(classes)) >>> cfsn_vecs = ConfusionVectors.from_arrays(true=true, probs=probs, classes=classes) >>> cfsn_vecs.confusion_matrix() pred person vehicle object real person 0 0 0 vehicle 2 4 1 object 2 1 0
- confusion_matrix(compress=False)[source]¶
Builds a confusion matrix from the confusion vectors.
- Parameters
compress (bool, default=False) – if True removes rows / columns with no entries
- Returns
- cmthe labeled confusion matrix
- (Note: we should write a efficient replacement for
this use case. #remove_pandas)
- Return type
pd.DataFrame
CommandLine
xdoctest -m kwcoco.metrics.confusion_vectors ConfusionVectors.confusion_matrix
Example
>>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), n_fn=(0, 1), classes=3, cls_noise=.2) >>> cfsn_vecs = dmet.confusion_vectors() >>> cm = cfsn_vecs.confusion_matrix() ... >>> print(cm.to_string(float_format=lambda x: '%.2f' % x)) pred background cat_1 cat_2 cat_3 real background 0.00 1.00 2.00 3.00 cat_1 3.00 12.00 0.00 0.00 cat_2 3.00 0.00 14.00 0.00 cat_3 2.00 0.00 0.00 17.00
- binarize_classless(negative_classes=None)[source]¶
Creates a binary representation useful for measuring the performance of detectors. It is assumed that scores of “positive” classes should be high and “negative” clases should be low.
- Parameters
negative_classes (List[str | int]) – list of negative class names or idxs, by default chooses any class with a true class index of -1. These classes should ideally have low scores.
- Returns
BinaryConfusionVectors
Note
The “classlessness” of this depends on the compat=”all” argument being used when constructing confusion vectors, otherwise it becomes something like a macro-average because the class information was used in deciding which true and predicted boxes were allowed to match.
Example
>>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), n_fn=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors() >>> class_idxs = list(dmet.classes.node_to_idx.values()) >>> binvecs = cfsn_vecs.binarize_classless()
- binarize_ovr(mode=1, keyby='name', ignore_classes={'ignore'}, approx=False)[source]¶
Transforms cfsn_vecs into one-vs-rest BinaryConfusionVectors for each category.
- Parameters
mode (int, default=1) – 0 for heirarchy aware or 1 for voc like. MODE 0 IS PROBABLY BROKEN
keyby (int | str) – can be cx or name
ignore_classes (Set[str]) – category names to ignore
approx (bool, default=0) – if True try and approximate missing scores otherwise assume they are irrecoverable and use -inf
- Returns
- which behaves like
Dict[int, BinaryConfusionVectors]: cx_to_binvecs
- Return type
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> cfsn_vecs = ConfusionVectors.demo() >>> print('cfsn_vecs = {!r}'.format(cfsn_vecs)) >>> catname_to_binvecs = cfsn_vecs.binarize_ovr(keyby='name') >>> print('catname_to_binvecs = {!r}'.format(catname_to_binvecs))
cfsn_vecs.data.pandas() catname_to_binvecs.cx_to_binvecs[‘class_1’].data.pandas()
Note
- class kwcoco.metrics.DetectionMetrics(classes=None)[source]¶
Bases:
NiceRepr
Object that computes associations between detections and can convert them into sklearn-compatible representations for scoring.
- Variables
gid_to_true_dets (Dict) – maps image ids to truth
gid_to_pred_dets (Dict) – maps image ids to predictions
classes (CategoryTree) – category coder
Example
>>> dmet = DetectionMetrics.demo( >>> nimgs=100, nboxes=(0, 3), n_fp=(0, 1), classes=8, score_noise=0.9, hacked=False) >>> print(dmet.score_kwcoco(bias=0, compat='mutex', prioritize='iou')['mAP']) ... >>> # NOTE: IN GENERAL NETHARN AND VOC ARE NOT THE SAME >>> print(dmet.score_voc(bias=0)['mAP']) 0.8582... >>> #print(dmet.score_coco()['mAP'])
- classmethod from_coco(true_coco, pred_coco, gids=None, verbose=0)[source]¶
Create detection metrics from two coco files representing the truth and predictions.
- Parameters
true_coco (kwcoco.CocoDataset)
pred_coco (kwcoco.CocoDataset)
Example
>>> import kwcoco >>> from kwcoco.demo.perterb import perterb_coco >>> true_coco = kwcoco.CocoDataset.demo('shapes') >>> perterbkw = dict(box_noise=0.5, cls_noise=0.5, score_noise=0.5) >>> pred_coco = perterb_coco(true_coco, **perterbkw) >>> self = DetectionMetrics.from_coco(true_coco, pred_coco) >>> self.score_voc()
- add_predictions(pred_dets, imgname=None, gid=None)[source]¶
Register/Add predicted detections for an image
- Parameters
pred_dets (kwimage.Detections) – predicted detections
imgname (str) – a unique string to identify the image
gid (int | None) – the integer image id if known
- add_truth(true_dets, imgname=None, gid=None)[source]¶
Register/Add groundtruth detections for an image
- Parameters
true_dets (kwimage.Detections) – groundtruth
imgname (str) – a unique string to identify the image
gid (int | None) – the integer image id if known
- confusion_vectors(iou_thresh=0.5, bias=0, gids=None, compat='mutex', prioritize='iou', ignore_classes='ignore', background_class=NoParam, verbose='auto', workers=0, track_probs='try', max_dets=None)[source]¶
Assigns predicted boxes to the true boxes so we can transform the detection problem into a classification problem for scoring.
- Parameters
iou_thresh (float | List[float], default=0.5) – bounding box overlap iou threshold required for assignment if a list, then return type is a dict
bias (float, default=0.0) – for computing bounding box overlap, either 1 or 0
gids (List[int], default=None) – which subset of images ids to compute confusion metrics on. If not specified all images are used.
compat (str, default=’all’) – can be (‘ancestors’ | ‘mutex’ | ‘all’). determines which pred boxes are allowed to match which true boxes. If ‘mutex’, then pred boxes can only match true boxes of the same class. If ‘ancestors’, then pred boxes can match true boxes that match or have a coarser label. If ‘all’, then any pred can match any true, regardless of its category label.
prioritize (str, default=’iou’) – can be (‘iou’ | ‘class’ | ‘correct’) determines which box to assign to if mutiple true boxes overlap a predicted box. if prioritize is iou, then the true box with maximum iou (above iou_thresh) will be chosen. If prioritize is class, then it will prefer matching a compatible class above a higher iou. If prioritize is correct, then ancestors of the true class are preferred over descendents of the true class, over unreleated classes.
ignore_classes (set | str, default={‘ignore’}) – class names indicating ignore regions
background_class (str, default=ub.NoParam) – Name of the background class. If unspecified we try to determine it with heuristics. A value of None means there is no background class.
verbose (int | str, default=’auto’) – verbosity flag. In auto mode, verbose=1 if len(gids) > 1000.
workers (int, default=0) – number of parallel assignment processes
track_probs (str, default=’try’) – can be ‘try’, ‘force’, or False. if truthy, we assume probabilities for multiple classes are available.
- Returns
kwcoco.metrics.confusion_vectors.ConfusionVectors | Dict[float, kwcoco.metrics.confusion_vectors.ConfusionVectors]
Example
>>> dmet = DetectionMetrics.demo(nimgs=30, classes=3, >>> nboxes=10, n_fp=3, box_noise=10, >>> with_probs=False) >>> iou_to_cfsn = dmet.confusion_vectors(iou_thresh=[0.3, 0.5, 0.9]) >>> for t, cfsn in iou_to_cfsn.items(): >>> print('t = {!r}'.format(t)) ... print(cfsn.binarize_ovr().measures()) ... print(cfsn.binarize_classless().measures())
- score_kwcoco(iou_thresh=0.5, bias=0, gids=None, compat='all', prioritize='iou')[source]¶
our scoring method
- score_voc(iou_thresh=0.5, bias=1, method='voc2012', gids=None, ignore_classes='ignore')[source]¶
score using voc method
Example
>>> dmet = DetectionMetrics.demo( >>> nimgs=100, nboxes=(0, 3), n_fp=(0, 1), classes=8, >>> score_noise=.5) >>> print(dmet.score_voc()['mAP']) 0.9399...
- score_pycocotools(with_evaler=False, with_confusion=False, verbose=0, iou_thresholds=None)[source]¶
score using ms-coco method
- Returns
dictionary with pct info
- Return type
Dict
Example
>>> # xdoctest: +REQUIRES(module:pycocotools) >>> from kwcoco.metrics.detect_metrics import * >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 3), n_fn=(0, 1), n_fp=(0, 1), classes=8, with_probs=False) >>> pct_info = dmet.score_pycocotools(verbose=1, >>> with_evaler=True, >>> with_confusion=True, >>> iou_thresholds=[0.5, 0.9]) >>> evaler = pct_info['evaler'] >>> iou_to_cfsn_vecs = pct_info['iou_to_cfsn_vecs'] >>> for iou_thresh in iou_to_cfsn_vecs.keys(): >>> print('iou_thresh = {!r}'.format(iou_thresh)) >>> cfsn_vecs = iou_to_cfsn_vecs[iou_thresh] >>> ovr_measures = cfsn_vecs.binarize_ovr().measures() >>> print('ovr_measures = {}'.format(ub.repr2(ovr_measures, nl=1, precision=4)))
Note
by default pycocotools computes average precision as the literal average of computed precisions at 101 uniformly spaced recall thresholds.
pycocoutils seems to only allow predictions with the same category as the truth to match those truth objects. This should be the same as calling dmet.confusion_vectors with compat = mutex
pycocoutils does not take into account the fact that each box often has a score for each category.
pycocoutils will be incorrect if any annotation has an id of 0
a major difference in the way kwcoco scores versus pycocoutils is the calculation of AP. The assignment between truth and predicted detections produces similar enough results. Given our confusion vectors we use the scikit-learn definition of AP, whereas pycocoutils seems to compute precision and recall — more or less correctly — but then it resamples the precision at various specified recall thresholds (in the accumulate function, specifically how pr is resampled into the q array). This can lead to a large difference in reported scores.
pycocoutils also smooths out the precision such that it is monotonic decreasing, which might not be the best idea.
pycocotools area ranges are inclusive on both ends, that means the “small” and “medium” truth selections do overlap somewhat.
- score_coco(with_evaler=False, with_confusion=False, verbose=0, iou_thresholds=None)¶
score using ms-coco method
- Returns
dictionary with pct info
- Return type
Dict
Example
>>> # xdoctest: +REQUIRES(module:pycocotools) >>> from kwcoco.metrics.detect_metrics import * >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 3), n_fn=(0, 1), n_fp=(0, 1), classes=8, with_probs=False) >>> pct_info = dmet.score_pycocotools(verbose=1, >>> with_evaler=True, >>> with_confusion=True, >>> iou_thresholds=[0.5, 0.9]) >>> evaler = pct_info['evaler'] >>> iou_to_cfsn_vecs = pct_info['iou_to_cfsn_vecs'] >>> for iou_thresh in iou_to_cfsn_vecs.keys(): >>> print('iou_thresh = {!r}'.format(iou_thresh)) >>> cfsn_vecs = iou_to_cfsn_vecs[iou_thresh] >>> ovr_measures = cfsn_vecs.binarize_ovr().measures() >>> print('ovr_measures = {}'.format(ub.repr2(ovr_measures, nl=1, precision=4)))
Note
by default pycocotools computes average precision as the literal average of computed precisions at 101 uniformly spaced recall thresholds.
pycocoutils seems to only allow predictions with the same category as the truth to match those truth objects. This should be the same as calling dmet.confusion_vectors with compat = mutex
pycocoutils does not take into account the fact that each box often has a score for each category.
pycocoutils will be incorrect if any annotation has an id of 0
a major difference in the way kwcoco scores versus pycocoutils is the calculation of AP. The assignment between truth and predicted detections produces similar enough results. Given our confusion vectors we use the scikit-learn definition of AP, whereas pycocoutils seems to compute precision and recall — more or less correctly — but then it resamples the precision at various specified recall thresholds (in the accumulate function, specifically how pr is resampled into the q array). This can lead to a large difference in reported scores.
pycocoutils also smooths out the precision such that it is monotonic decreasing, which might not be the best idea.
pycocotools area ranges are inclusive on both ends, that means the “small” and “medium” truth selections do overlap somewhat.
- classmethod demo(**kwargs)[source]¶
Creates random true boxes and predicted boxes that have some noisy offset from the truth.
- Kwargs:
- classes (int):
class list or the number of foreground classes. Defaults to 1.
nimgs (int): number of images in the coco datasts. Defaults to 1.
nboxes (int): boxes per image. Defaults to 1.
n_fp (int): number of false positives. Defaults to 0.
- n_fn (int):
number of false negatives. Defaults to 0.
- box_noise (float):
std of a normal distribution used to perterb both box location and box size. Defaults to 0.
- cls_noise (float):
probability that a class label will change. Must be within 0 and 1. Defaults to 0.
- anchors (ndarray):
used to create random boxes. Defaults to None.
- null_pred (bool):
if True, predicted classes are returned as null, which means only localization scoring is suitable. Defaults to 0.
- with_probs (bool):
if True, includes per-class probabilities with predictions Defaults to 1.
CommandLine
xdoctest -m kwcoco.metrics.detect_metrics DetectionMetrics.demo:2 --show
Example
>>> kwargs = {} >>> # Seed the RNG >>> kwargs['rng'] = 0 >>> # Size parameters determine how big the data is >>> kwargs['nimgs'] = 5 >>> kwargs['nboxes'] = 7 >>> kwargs['classes'] = 11 >>> # Noise parameters perterb predictions further from the truth >>> kwargs['n_fp'] = 3 >>> kwargs['box_noise'] = 0.1 >>> kwargs['cls_noise'] = 0.5 >>> dmet = DetectionMetrics.demo(**kwargs) >>> print('dmet.classes = {}'.format(dmet.classes)) dmet.classes = <CategoryTree(nNodes=12, maxDepth=3, maxBreadth=4...)> >>> # Can grab kwimage.Detection object for any image >>> print(dmet.true_detections(gid=0)) <Detections(4)> >>> print(dmet.pred_detections(gid=0)) <Detections(7)>
Example
>>> # Test case with null predicted categories >>> dmet = DetectionMetrics.demo(nimgs=30, null_pred=1, classes=3, >>> nboxes=10, n_fp=3, box_noise=0.1, >>> with_probs=False) >>> dmet.gid_to_pred_dets[0].data >>> dmet.gid_to_true_dets[0].data >>> cfsn_vecs = dmet.confusion_vectors() >>> binvecs_ovr = cfsn_vecs.binarize_ovr() >>> binvecs_per = cfsn_vecs.binarize_classless() >>> measures_per = binvecs_per.measures() >>> measures_ovr = binvecs_ovr.measures() >>> print('measures_per = {!r}'.format(measures_per)) >>> print('measures_ovr = {!r}'.format(measures_ovr)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> measures_ovr['perclass'].draw(key='pr', fnum=2)
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> n_fp=(0, 1), n_fn=(0, 1), nimgs=32, nboxes=(0, 16), >>> classes=3, rng=0, newstyle=1, box_noise=0.5, cls_noise=0.0, score_noise=0.3, with_probs=False) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> summary = dmet.summarize(plot=True, title='DetectionMetrics summary demo', with_ovr=True, with_bin=False) >>> summary['bin_measures'] >>> kwplot.show_if_requested()
- summarize(out_dpath=None, plot=False, title='', with_bin='auto', with_ovr='auto')[source]¶
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> n_fp=(0, 128), n_fn=(0, 4), nimgs=512, nboxes=(0, 32), >>> classes=3, rng=0) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> dmet.summarize(plot=True, title='DetectionMetrics summary demo') >>> kwplot.show_if_requested()
- class kwcoco.metrics.Measures(info)[source]¶
-
Holds accumulated confusion counts, and derived measures
Example
>>> from kwcoco.metrics.confusion_vectors import BinaryConfusionVectors # NOQA >>> binvecs = BinaryConfusionVectors.demo(n=100, p_error=0.5) >>> self = binvecs.measures() >>> print('self = {!r}'.format(self)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> self.draw(doclf=True) >>> self.draw(key='pr', pnum=(1, 2, 1)) >>> self.draw(key='roc', pnum=(1, 2, 2)) >>> kwplot.show_if_requested()
- property catname¶
- draw(key=None, prefix='', **kw)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors # NOQA >>> cfsn_vecs = ConfusionVectors.demo() >>> ovr_cfsn = cfsn_vecs.binarize_ovr(keyby='name') >>> self = ovr_cfsn.measures()['perclass'] >>> self.draw('mcc', doclf=True, fnum=1) >>> self.draw('pr', doclf=1, fnum=2) >>> self.draw('roc', doclf=1, fnum=3)
- summary_plot(fnum=1, title='', subplots='auto')[source]¶
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors # NOQA >>> cfsn_vecs = ConfusionVectors.demo(n=3, p_error=0.5) >>> binvecs = cfsn_vecs.binarize_classless() >>> self = binvecs.measures() >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> self.summary_plot() >>> kwplot.show_if_requested()
- classmethod demo(**kwargs)[source]¶
Create a demo Measures object for testing / demos
- Parameters
**kwargs – passed to
BinaryConfusionVectors.demo()
. some valid keys are: n, rng, p_rue, p_error, p_miss.
- classmethod combine(tocombine, precision=None, growth=None, thresh_bins=None)[source]¶
Combine binary confusion metrics
- Parameters
tocombine (List[Measures]) – a list of measures to combine into one
precision (int | None) – If specified rounds thresholds to this precision which can prevent a RAM explosion when combining a large number of measures. However, this is a lossy operation and will impact the underlying scores. NOTE: use
growth
instead.growth (int | None) – if specified this limits how much the resulting measures are allowed to grow by. If None, growth is unlimited. Otherwise, if growth is ‘max’, the growth is limited to the maximum length of an input. We might make this more numerical in the future.
thresh_bins (int) – Force this many threshold bins.
- Returns
kwcoco.metrics.confusion_measures.Measures
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> measures1 = Measures.demo(n=15) >>> measures2 = measures1 >>> tocombine = [measures1, measures2] >>> new_measures = Measures.combine(tocombine) >>> new_measures.reconstruct() >>> print('new_measures = {!r}'.format(new_measures)) >>> print('measures1 = {!r}'.format(measures1)) >>> print('measures2 = {!r}'.format(measures2)) >>> print(ub.repr2(measures1.__json__(), nl=1, sort=0)) >>> print(ub.repr2(measures2.__json__(), nl=1, sort=0)) >>> print(ub.repr2(new_measures.__json__(), nl=1, sort=0)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.figure(fnum=1) >>> new_measures.summary_plot() >>> measures1.summary_plot() >>> measures1.draw('roc') >>> measures2.draw('roc') >>> new_measures.draw('roc')
Example
>>> # Demonstrate issues that can arrise from choosing a precision >>> # that is too low when combining metrics. Breakpoints >>> # between different metrics can get muddled, but choosing a >>> # precision that is too high can overwhelm memory. >>> from kwcoco.metrics.confusion_measures import * # NOQA >>> base = ub.map_vals(np.asarray, { >>> 'tp_count': [ 1, 1, 2, 2, 2, 2, 3], >>> 'fp_count': [ 0, 1, 1, 2, 3, 4, 5], >>> 'fn_count': [ 1, 1, 0, 0, 0, 0, 0], >>> 'tn_count': [ 5, 4, 4, 3, 2, 1, 0], >>> 'thresholds': [.0, .0, .0, .0, .0, .0, .0], >>> }) >>> # Make tiny offsets to thresholds >>> rng = kwarray.ensure_rng(0) >>> n = len(base['thresholds']) >>> offsets = [ >>> sorted(rng.rand(n) * 10 ** -rng.randint(4, 7))[::-1] >>> for _ in range(20) >>> ] >>> tocombine = [] >>> for offset in offsets: >>> base_n = base.copy() >>> base_n['thresholds'] += offset >>> measures_n = Measures(base_n).reconstruct() >>> tocombine.append(measures_n) >>> for precision in [6, 5, 2]: >>> combo = Measures.combine(tocombine, precision=precision).reconstruct() >>> print('precision = {!r}'.format(precision)) >>> print('combo = {}'.format(ub.repr2(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> for growth in [None, 'max', 'log', 'root', 'half']: >>> combo = Measures.combine(tocombine, growth=growth).reconstruct() >>> print('growth = {!r}'.format(growth)) >>> print('combo = {}'.format(ub.repr2(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> #print(combo.counts().pandas())
Example
>>> # Test case: combining a single measures should leave it unchanged >>> from kwcoco.metrics.confusion_measures import * # NOQA >>> measures = Measures.demo(n=40, p_true=0.2, p_error=0.4, p_miss=0.6) >>> df1 = measures.counts().pandas().fillna(0) >>> print(df1) >>> tocombine = [measures] >>> combo = Measures.combine(tocombine) >>> df2 = combo.counts().pandas().fillna(0) >>> print(df2) >>> assert np.allclose(df1, df2)
>>> combo = Measures.combine(tocombine, thresh_bins=2) >>> df3 = combo.counts().pandas().fillna(0) >>> print(df3)
>>> # I am NOT sure if this is correct or not >>> thresh_bins = 20 >>> combo = Measures.combine(tocombine, thresh_bins=thresh_bins) >>> df4 = combo.counts().pandas().fillna(0) >>> print(df4)
>>> combo = Measures.combine(tocombine, thresh_bins=np.linspace(0, 1, 20)) >>> df4 = combo.counts().pandas().fillna(0) >>> print(df4)
assert np.allclose(combo[‘thresholds’], measures[‘thresholds’]) assert np.allclose(combo[‘fp_count’], measures[‘fp_count’]) assert np.allclose(combo[‘tp_count’], measures[‘tp_count’]) assert np.allclose(combo[‘tp_count’], measures[‘tp_count’])
globals().update(xdev.get_func_kwargs(Measures.combine))
Example
>>> # Test degenerate case >>> from kwcoco.metrics.confusion_measures import * # NOQA >>> tocombine = [ >>> {'fn_count': [0.0], 'fp_count': [359980.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7747.0]}, >>> {'fn_count': [0.0], 'fp_count': [360849.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [424.0]}, >>> {'fn_count': [0.0], 'fp_count': [367003.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [991.0]}, >>> {'fn_count': [0.0], 'fp_count': [367976.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [1017.0]}, >>> {'fn_count': [0.0], 'fp_count': [676338.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7067.0]}, >>> {'fn_count': [0.0], 'fp_count': [676348.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7406.0]}, >>> {'fn_count': [0.0], 'fp_count': [676626.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7858.0]}, >>> {'fn_count': [0.0], 'fp_count': [676693.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [10969.0]}, >>> {'fn_count': [0.0], 'fp_count': [677269.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11188.0]}, >>> {'fn_count': [0.0], 'fp_count': [677331.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11734.0]}, >>> {'fn_count': [0.0], 'fp_count': [677395.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11556.0]}, >>> {'fn_count': [0.0], 'fp_count': [677418.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11621.0]}, >>> {'fn_count': [0.0], 'fp_count': [677422.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11424.0]}, >>> {'fn_count': [0.0], 'fp_count': [677648.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [9804.0]}, >>> {'fn_count': [0.0], 'fp_count': [677826.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [2470.0]}, >>> {'fn_count': [0.0], 'fp_count': [677834.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [2470.0]}, >>> {'fn_count': [0.0], 'fp_count': [677835.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [2470.0]}, >>> {'fn_count': [11123.0, 0.0], 'fp_count': [0.0, 676754.0], 'thresholds': [0.0002442002442002442, 0.0], 'tn_count': [676754.0, 0.0], 'tp_count': [2.0, 11125.0]}, >>> {'fn_count': [7738.0, 0.0], 'fp_count': [0.0, 676466.0], 'thresholds': [0.0002442002442002442, 0.0], 'tn_count': [676466.0, 0.0], 'tp_count': [0.0, 7738.0]}, >>> {'fn_count': [8653.0, 0.0], 'fp_count': [0.0, 676341.0], 'thresholds': [0.0002442002442002442, 0.0], 'tn_count': [676341.0, 0.0], 'tp_count': [0.0, 8653.0]}, >>> ] >>> thresh_bins = np.linspace(0, 1, 4) >>> combo = Measures.combine(tocombine, thresh_bins=thresh_bins).reconstruct() >>> print('tocombine = {}'.format(ub.repr2(tocombine, nl=2))) >>> print('thresh_bins = {!r}'.format(thresh_bins)) >>> print(ub.repr2(combo.__json__(), nl=1)) >>> for thresh_bins in [4096, 1]: >>> combo = Measures.combine(tocombine, thresh_bins=thresh_bins).reconstruct() >>> print('thresh_bins = {!r}'.format(thresh_bins)) >>> print('combo = {}'.format(ub.repr2(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> for precision in [6, 5, 2]: >>> combo = Measures.combine(tocombine, precision=precision).reconstruct() >>> print('precision = {!r}'.format(precision)) >>> print('combo = {}'.format(ub.repr2(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> for growth in [None, 'max', 'log', 'root', 'half']: >>> combo = Measures.combine(tocombine, growth=growth).reconstruct() >>> print('growth = {!r}'.format(growth)) >>> print('combo = {}'.format(ub.repr2(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds'])))
- class kwcoco.metrics.OneVsRestConfusionVectors(cx_to_binvecs, classes)[source]¶
Bases:
NiceRepr
Container for multiple one-vs-rest binary confusion vectors
- Variables
cx_to_binvecs –
classes –
Example
>>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors() >>> self = cfsn_vecs.binarize_ovr(keyby='name') >>> print('self = {!r}'.format(self))
- classmethod demo()[source]¶
- Parameters
**kwargs – See
kwcoco.metrics.DetectionMetrics.demo()
- Returns
ConfusionVectors
- measures(stabalize_thresh=7, fp_cutoff=None, monotonic_ppv=True, ap_method='pycocotools')[source]¶
Creates binary confusion measures for every one-versus-rest category.
- Parameters
stabalize_thresh (int, default=7) – if fewer than this many data points inserts dummy stabilization data so curves can still be drawn.
fp_cutoff (int, default=None) – maximum number of false positives in the truncated roc curves.
None
is equivalent tofloat('inf')
monotonic_ppv (bool, default=True) – if True ensures that precision is always increasing as recall decreases. This is done in pycocotools scoring, but I’m not sure its a good idea.
Example
>>> self = OneVsRestConfusionVectors.demo() >>> thresh_result = self.measures()['perclass']
- class kwcoco.metrics.PerClass_Measures(cx_to_info)[source]¶
-
- draw(key='mcc', prefix='', **kw)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors # NOQA >>> cfsn_vecs = ConfusionVectors.demo() >>> ovr_cfsn = cfsn_vecs.binarize_ovr(keyby='name') >>> self = ovr_cfsn.measures()['perclass'] >>> self.draw('mcc', doclf=True, fnum=1) >>> self.draw('pr', doclf=1, fnum=2) >>> self.draw('roc', doclf=1, fnum=3)
- summary_plot(fnum=1, title='', subplots='auto')[source]¶
CommandLine
python ~/code/kwcoco/kwcoco/metrics/confusion_measures.py PerClass_Measures.summary_plot --show
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> n_fp=(0, 1), n_fn=(0, 3), nimgs=32, nboxes=(0, 32), >>> classes=3, rng=0, newstyle=1, box_noise=0.7, cls_noise=0.2, score_noise=0.3, with_probs=False) >>> cfsn_vecs = dmet.confusion_vectors() >>> ovr_cfsn = cfsn_vecs.binarize_ovr(keyby='name', ignore_classes=['vector', 'raster']) >>> self = ovr_cfsn.measures()['perclass'] >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> import seaborn as sns >>> sns.set() >>> self.summary_plot(title='demo summary_plot ovr', subplots=['pr', 'roc']) >>> kwplot.show_if_requested() >>> self.summary_plot(title='demo summary_plot ovr', subplots=['mcc', 'acc'], fnum=2)
kwcoco.util package¶
Submodules¶
Module contents¶
Submodules¶
kwcoco.abstract_coco_dataset module¶
kwcoco.category_tree module¶
The category_tree
module defines the CategoryTree
class, which
is used for maintaining flat or hierarchical category information. The kwcoco
version of this class only contains the datastructure and does not contain any
torch operations. See the ndsampler version for the extension with torch
operations.
- class kwcoco.category_tree.CategoryTree(graph=None, checks=True)[source]¶
Bases:
NiceRepr
Wrapper that maintains flat or hierarchical category information.
Helps compute softmaxes and probabilities for tree-based categories where a directed edge (A, B) represents that A is a superclass of B.
Note
There are three basic properties that this object maintains:
node: Alphanumeric string names that should be generally descriptive. Using spaces and special characters in these names is discouraged, but can be done. This is the COCO category "name" attribute. For categories this may be denoted as (name, node, cname, catname). id: The integer id of a category should ideally remain consistent. These are often given by a dataset (e.g. a COCO dataset). This is the COCO category "id" attribute. For categories this is often denoted as (id, cid). index: Contigous zero-based indices that indexes the list of categories. These should be used for the fastest access in backend computation tasks. Typically corresponds to the ordering of the channels in the final linear layer in an associated model. For categories this is often denoted as (index, cidx, idx, or cx).
- Variables
idx_to_node (List[str]) – a list of class names. Implicitly maps from index to category name.
id_to_node (Dict[int, str]) – maps integer ids to category names
node_to_idx (Dict[str, int]) – maps category names to indexes
graph (networkx.Graph) – a Graph that stores any hierarchy information. For standard mutually exclusive classes, this graph is edgeless. Nodes in this graph can maintain category attributes / properties.
idx_groups (List[List[int]]) – groups of category indices that share the same parent category.
Example
>>> from kwcoco.category_tree import * >>> graph = nx.from_dict_of_lists({ >>> 'background': [], >>> 'foreground': ['animal'], >>> 'animal': ['mammal', 'fish', 'insect', 'reptile'], >>> 'mammal': ['dog', 'cat', 'human', 'zebra'], >>> 'zebra': ['grevys', 'plains'], >>> 'grevys': ['fred'], >>> 'dog': ['boxer', 'beagle', 'golden'], >>> 'cat': ['maine coon', 'persian', 'sphynx'], >>> 'reptile': ['bearded dragon', 't-rex'], >>> }, nx.DiGraph) >>> self = CategoryTree(graph) >>> print(self) <CategoryTree(nNodes=22, maxDepth=6, maxBreadth=4...)>
Example
>>> # The coerce classmethod is the easiest way to create an instance >>> import kwcoco >>> kwcoco.CategoryTree.coerce(['a', 'b', 'c']) <CategoryTree...nNodes=3, nodes=...'a', 'b', 'c'... >>> kwcoco.CategoryTree.coerce(4) <CategoryTree...nNodes=4, nodes=...'class_1', 'class_2', 'class_3', ... >>> kwcoco.CategoryTree.coerce(4)
- classmethod from_mutex(nodes, bg_hack=True)[source]¶
- Parameters
nodes (List[str]) – or a list of class names (in which case they will all be assumed to be mutually exclusive)
Example
>>> print(CategoryTree.from_mutex(['a', 'b', 'c'])) <CategoryTree(nNodes=3, ...)>
- classmethod from_json(state)[source]¶
- Parameters
state (Dict) – see __getstate__ / __json__ for details
- classmethod from_coco(categories)[source]¶
Create a CategoryTree object from coco categories
- Parameters
List[Dict] – list of coco-style categories
- classmethod coerce(data, **kw)[source]¶
Attempt to coerce data as a CategoryTree object.
This is primarily useful for when the software stack depends on categories being represent
This will work if the input data is a specially formatted json dict, a list of mutually exclusive classes, or if it is already a CategoryTree. Otherwise an error will be thrown.
- Parameters
data (object) – a known representation of a category tree.
**kwargs – input type specific arguments
- Returns
self
- Return type
- Raises
TypeError - if the input format is unknown –
ValueError - if kwargs are not compatible with the input format –
Example
>>> import kwcoco >>> classes1 = kwcoco.CategoryTree.coerce(3) # integer >>> classes2 = kwcoco.CategoryTree.coerce(classes1.__json__()) # graph dict >>> classes3 = kwcoco.CategoryTree.coerce(['class_1', 'class_2', 'class_3']) # mutex list >>> classes4 = kwcoco.CategoryTree.coerce(classes1.graph) # nx Graph >>> classes5 = kwcoco.CategoryTree.coerce(classes1) # cls >>> # xdoctest: +REQUIRES(module:ndsampler) >>> import ndsampler >>> classes6 = ndsampler.CategoryTree.coerce(3) >>> classes7 = ndsampler.CategoryTree.coerce(classes1) >>> classes8 = kwcoco.CategoryTree.coerce(classes6)
- classmethod demo(key='coco', **kwargs)[source]¶
- Parameters
key (str) – specify which demo dataset to use. Can be ‘coco’ (which uses the default coco demo data). Can be ‘btree’ which creates a binary tree and accepts kwargs ‘r’ and ‘h’ for branching-factor and height. Can be ‘btree2’, which is the same as btree but returns strings
CommandLine
xdoctest -m ~/code/kwcoco/kwcoco/category_tree.py CategoryTree.demo
Example
>>> from kwcoco.category_tree import * >>> self = CategoryTree.demo() >>> print('self = {}'.format(self)) self = <CategoryTree(nNodes=10, maxDepth=2, maxBreadth=4...)>
- property id_to_idx¶
Example: >>> import kwcoco >>> self = kwcoco.CategoryTree.demo() >>> self.id_to_idx[1]
- property idx_to_id¶
Example: >>> import kwcoco >>> self = kwcoco.CategoryTree.demo() >>> self.idx_to_id[0]
- idx_to_ancestor_idxs¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- idx_to_descendants_idxs¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- idx_pairwise_distance¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- is_mutex()[source]¶
Returns True if all categories are mutually exclusive (i.e. flat)
If true, then the classes may be represented as a simple list of class names without any loss of information, otherwise the underlying category graph is necessary to preserve all knowledge.
Todo
[ ] what happens when we have a dummy root?
- property num_classes¶
- property class_names¶
- property category_names¶
- property cats¶
Returns a mapping from category names to category attributes.
If this category tree was constructed from a coco-dataset, then this will contain the coco category attributes.
- Returns
Dict[str, Dict[str, object]]
Example
>>> from kwcoco.category_tree import * >>> self = CategoryTree.demo() >>> print('self.cats = {!r}'.format(self.cats))
- normalize()[source]¶
Applies a normalization scheme to the categories.
Note: this may break other tasks that depend on exact category names.
- Returns
CategoryTree
Example
>>> from kwcoco.category_tree import * # NOQA >>> import kwcoco >>> orig = kwcoco.CategoryTree.demo('animals_v1') >>> self = kwcoco.CategoryTree(nx.relabel_nodes(orig.graph, str.upper)) >>> norm = self.normalize()
kwcoco.channel_spec module¶
This module defines the KWCOCO Channel Specification and API.
The KWCOCO Channel specification is a way to semantically express how a
combination of image channels are grouped. This can specify how these channels
(somtimes called bands or features) are arranged on disk or input to an
algorithm. The core idea reduces to a Set[List[str]]
— or a unordered set
of ordered sequences of strings corresponding to channel “names”. The way these
are specified is with a “,” to separate lists in an unordered set and with a
“|” to separate the channel names. Other syntax exists for convinience, but
a strict normalized channel spec only contains these core symbols.
Another way to think of a kwcoco channel spec is that splitting the spec by “,” gives groups of channels that should be processed together and “late-fused”. Within each group the “|” operator “early-fuses” the channels.
For instance, say we had a network and we wanted to process 3-channel rgb images in one stream and 1-channel infrared images in a second stream and then fuse them together. The kwcoco channel specification for channels labled as ‘red’, ‘green’, ‘blue’, and ‘infrared’ would be:
infrared,red|green|blue
Note, it is up to an algorithm to do any early-late fusion. KWCoco simply provides the specification as a tool to quickly access a particular combination of channels from disk.
The ChannelSpec has these simple rules:
* each 1D channel is a alphanumeric string.
* The pipe ('|') separates aligned early fused stremas (non-communative)
* The comma (',') separates late-fused streams, (happens after pipe operations, and is communative)
* Certain common sets of early fused channels have codenames, for example:
rgb = r|g|b
rgba = r|g|b|a
dxdy = dy|dy
* Multiple channels can be specified via a "slice" notation. For example:
mychan.0:4
represents 4 channels:
mychan.0, mychan.1, mychan.2, and mychan.3
slices after the "." work like python slices
The detailed grammar for the spec is
?start: stream
// An identifier can contain spaces
IDEN: ("_"|LETTER) ("_"|" "|LETTER|DIGIT)*
chan_single : IDEN
chan_getitem : IDEN "." INT
chan_getslice_0b : IDEN ":" INT
chan_getslice_ab : IDEN "." INT ":" INT
// A channel code can just be an ID, or it can have a getitem
// style syntax with a scalar or slice as an argument
chan_code : chan_single | chan_getslice_0b | chan_getslice_ab | chan_getitem
// Fused channels are an ordered sequence of channel codes (without sensors)
fused : chan_code ("|" chan_code)*
// Channels can be specified in a sequence but must contain parens
fused_seq : "(" fused ("," fused)* ")"
channel_rhs : fused | fused_seq
stream : channel_rhs ("," channel_rhs)*
%import common.DIGIT
%import common.LETTER
%import common.INT
Note that a stream refers to a the full ChannelSpec and fused refers to FusedChannelSpec.
For single arrays, the spec is always an early fused spec.
Todo
[X] : normalize representations? e.g: rgb = r|g|b? - OPTIONAL
[X] : rename to BandsSpec or SensorSpec? - REJECTED
[ ] : allow bands to be coerced, i.e. rgb -> gray, or gray->rgb
Todo
[x]: Use FusedChannelSpec as a member of ChannelSpec
[x]: Handle special slice suffix for length calculations
- SeeAlso:
:module:kwcoco.sensorchan_spec - The generalized sensor / channel specification
Note
do not specify the same channel in FusedChannelSpec twice
Example
>>> import kwcoco
>>> spec = kwcoco.ChannelSpec('b1|b2|b3,m.0:4|x1|x2,x.3|x.4|x.5')
>>> print(spec)
<ChannelSpec(b1|b2|b3,m.0:4|x1|x2,x.3|x.4|x.5)>
>>> for stream in spec.streams():
>>> print(stream)
<FusedChannelSpec(b1|b2|b3)>
<FusedChannelSpec(m.0:4|x1|x2)>
<FusedChannelSpec(x.3|x.4|x.5)>
>>> # Normalization
>>> normalized = spec.normalize()
>>> print(normalized)
<ChannelSpec(b1|b2|b3,m.0|m.1|m.2|m.3|x1|x2,x.3|x.4|x.5)>
>>> print(normalized.fuse().spec)
b1|b2|b3|m.0|m.1|m.2|m.3|x1|x2|x.3|x.4|x.5
>>> print(normalized.fuse().concise().spec)
b1|b2|b3|m:4|x1|x2|x.3:6
- class kwcoco.channel_spec.BaseChannelSpec[source]¶
Bases:
NiceRepr
Common code API between
FusedChannelSpec
andChannelSpec
Todo
- [ ] Keep working on this base spec and ensure the inheriting classes
conform to it.
- abstract property spec¶
The string encodeing of this spec
- Returns
str
- abstract classmethod coerce(data)[source]¶
Try and interpret the input data as some sort of spec
- Parameters
data (str | int | list | dict | BaseChannelSpec) – any input data that is known to represent a spec
- Returns
BaseChannelSpec
- abstract streams()[source]¶
Breakup this spec into individual early-fused components
- Returns
List[FusedChannelSpec]
- abstract normalize()[source]¶
Expand all channel codes into their normalized long-form
- Returns
BaseChannelSpec
- late_fuse(other)[source]¶
Example
>>> import kwcoco >>> a = kwcoco.ChannelSpec.coerce('A|B|C,edf') >>> b = kwcoco.ChannelSpec.coerce('A12') >>> c = kwcoco.ChannelSpec.coerce('') >>> d = kwcoco.ChannelSpec.coerce('rgb') >>> print(a.late_fuse(b).spec) >>> print((a + b).spec) >>> print((b + a).spec) >>> print((a + b + c).spec) >>> print(sum([a, b, c, d]).spec) A|B|C,edf,A12 A|B|C,edf,A12 A12,A|B|C,edf A|B|C,edf,A12 A|B|C,edf,A12,rgb
- path_sanitize(maxlen=None)[source]¶
Clean up the channel spec so it can be used in a pathname.
- Parameters
maxlen (int) – if specified, and the name is longer than this length, it is shortened. Must be 8 or greater.
- Returns
path suitable for usage in a filename
- Return type
Note
This mapping is not invertible and should not be relied on to reconstruct the path spec. This is only a convenience.
Example
>>> import kwcoco >>> print(kwcoco.FusedChannelSpec.coerce('a chan with space|bar|baz').path_sanitize()) a chan with space_bar_baz >>> print(kwcoco.ChannelSpec.coerce('foo|bar|baz,biz').path_sanitize()) foo_bar_baz,biz
Example
>>> import kwcoco >>> print(kwcoco.ChannelSpec.coerce('foo.0:3').normalize().path_sanitize(24)) foo.0_foo.1_foo.2 >>> print(kwcoco.ChannelSpec.coerce('foo.0:256').normalize().path_sanitize(24)) tuuxtfnrsvdhezkdndysxo_256
- class kwcoco.channel_spec.FusedChannelSpec(parsed, _is_normalized=False)[source]¶
Bases:
BaseChannelSpec
A specific type of channel spec with only one early fused stream.
The channels in this stream are non-communative
Behaves like a list of atomic-channel codes (which may represent more than 1 channel), normalized codes always represent exactly 1 channel.
Note
This class name and API is in flux and subject to change.
Todo
A special code indicating a name and some number of bands that that names contains, this would primarilly be used for large numbers of channels produced by a network. Like:
resnet_d35d060_L5:512
or
resnet_d35d060_L5[:512]
might refer to a very specific (hashed) set of resnet parameters with 512 bands
maybe we can do something slicly like:
resnet_d35d060_L5[A:B] resnet_d35d060_L5:A:B
Do we want to “just store the code” and allow for parsing later?
Or do we want to ensure the serialization is parsed before we construct the data structure?
Example
>>> from kwcoco.channel_spec import * # NOQA >>> import pickle >>> self = FusedChannelSpec.coerce(3) >>> recon = pickle.loads(pickle.dumps(self)) >>> self = ChannelSpec.coerce('a|b,c|d') >>> recon = pickle.loads(pickle.dumps(self))
- property spec¶
- unique¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- classmethod coerce(data)[source]¶
Example
>>> from kwcoco.channel_spec import * # NOQA >>> FusedChannelSpec.coerce(['a', 'b', 'c']) >>> FusedChannelSpec.coerce('a|b|c') >>> FusedChannelSpec.coerce(3) >>> FusedChannelSpec.coerce(FusedChannelSpec(['a'])) >>> assert FusedChannelSpec.coerce('').numel() == 0
- concise()[source]¶
Shorted the channel spec by de-normaliz slice syntax
- Returns
concise spec
- Return type
Example
>>> from kwcoco.channel_spec import * # NOQA >>> self = FusedChannelSpec.coerce( >>> 'b|a|a.0|a.1|a.2|a.5|c|a.8|a.9|b.0:3|c.0') >>> short = self.concise() >>> long = short.normalize() >>> numels = [c.numel() for c in [self, short, long]] >>> print('self.spec = {!r}'.format(self.spec)) >>> print('short.spec = {!r}'.format(short.spec)) >>> print('long.spec = {!r}'.format(long.spec)) >>> print('numels = {!r}'.format(numels)) self.spec = 'b|a|a.0|a.1|a.2|a.5|c|a.8|a.9|b.0:3|c.0' short.spec = 'b|a|a:3|a.5|c|a.8:10|b:3|c.0' long.spec = 'b|a|a.0|a.1|a.2|a.5|c|a.8|a.9|b.0|b.1|b.2|c.0' numels = [13, 13, 13] >>> assert long.concise().spec == short.spec
- normalize()[source]¶
Replace aliases with explicit single-band-per-code specs
- Returns
normalize spec
- Return type
Example
>>> from kwcoco.channel_spec import * # NOQA >>> self = FusedChannelSpec.coerce('b1|b2|b3|rgb') >>> normed = self.normalize() >>> print('self = {}'.format(self)) >>> print('normed = {}'.format(normed)) self = <FusedChannelSpec(b1|b2|b3|rgb)> normed = <FusedChannelSpec(b1|b2|b3|r|g|b)> >>> self = FusedChannelSpec.coerce('B:1:11') >>> normed = self.normalize() >>> print('self = {}'.format(self)) >>> print('normed = {}'.format(normed)) self = <FusedChannelSpec(B:1:11)> normed = <FusedChannelSpec(B.1|B.2|B.3|B.4|B.5|B.6|B.7|B.8|B.9|B.10)> >>> self = FusedChannelSpec.coerce('B.1:11') >>> normed = self.normalize() >>> print('self = {}'.format(self)) >>> print('normed = {}'.format(normed)) self = <FusedChannelSpec(B.1:11)> normed = <FusedChannelSpec(B.1|B.2|B.3|B.4|B.5|B.6|B.7|B.8|B.9|B.10)>
- sizes()[source]¶
Returns a list indicating the size of each atomic code
- Returns
List[int]
Example
>>> from kwcoco.channel_spec import * # NOQA >>> self = FusedChannelSpec.coerce('b1|Z:3|b2|b3|rgb') >>> self.sizes() [1, 3, 1, 1, 3] >>> assert(FusedChannelSpec.parse('a.0').numel()) == 1 >>> assert(FusedChannelSpec.parse('a:0').numel()) == 0 >>> assert(FusedChannelSpec.parse('a:1').numel()) == 1
- as_list¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- as_oset¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- as_set¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- to_set¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- to_oset¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- to_list¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- as_path()[source]¶
Returns a string suitable for use in a path.
Note, this may no longer be a valid channel spec
- difference(other)[source]¶
Set difference
Example
>>> FCS = FusedChannelSpec.coerce >>> self = FCS('rgb|disparity|flowx|flowy') >>> other = FCS('r|b') >>> self.difference(other) >>> other = FCS('flowx') >>> self.difference(other) >>> FCS = FusedChannelSpec.coerce >>> assert len((FCS('a') - {'a'}).parsed) == 0 >>> assert len((FCS('a.0:3') - {'a.0'}).parsed) == 2
- intersection(other)[source]¶
Example
>>> FCS = FusedChannelSpec.coerce >>> self = FCS('rgb|disparity|flowx|flowy') >>> other = FCS('r|b|XX') >>> self.intersection(other)
- union(other)[source]¶
Example
>>> from kwcoco.channel_spec import * # NOQA >>> FCS = FusedChannelSpec.coerce >>> self = FCS('rgb|disparity|flowx|flowy') >>> other = FCS('r|b|XX') >>> self.union(other)
- component_indices(axis=2)[source]¶
Look up component indices within this stream
Example
>>> FCS = FusedChannelSpec.coerce >>> self = FCS('disparity|rgb|flowx|flowy') >>> component_indices = self.component_indices() >>> print('component_indices = {}'.format(ub.repr2(component_indices, nl=1))) component_indices = { 'disparity': (slice(...), slice(...), slice(0, 1, None)), 'flowx': (slice(...), slice(...), slice(4, 5, None)), 'flowy': (slice(...), slice(...), slice(5, 6, None)), 'rgb': (slice(...), slice(...), slice(1, 4, None)), }
- streams()[source]¶
Idempotence with
ChannelSpec.streams()
- fuse()[source]¶
Idempotence with
ChannelSpec.streams()
- class kwcoco.channel_spec.ChannelSpec(spec, parsed=None)[source]¶
Bases:
BaseChannelSpec
Parse and extract information about network input channel specs for early or late fusion networks.
Behaves like a dictionary of FusedChannelSpec objects
Todo
- [ ] Rename to something that indicates this is a collection of
FusedChannelSpec? MultiChannelSpec?
Note
This class name and API is in flux and subject to change.
Note
The pipe (‘|’) character represents an early-fused input stream, and order matters (it is non-communative).
The comma (‘,’) character separates different inputs streams/branches for a multi-stream/branch network which will be lated fused. Order does not matter
Example
>>> from kwcoco.channel_spec import * # NOQA >>> # Integer spec >>> ChannelSpec.coerce(3) <ChannelSpec(u0|u1|u2) ...>
>>> # single mode spec >>> ChannelSpec.coerce('rgb') <ChannelSpec(rgb) ...>
>>> # early fused input spec >>> ChannelSpec.coerce('rgb|disprity') <ChannelSpec(rgb|disprity) ...>
>>> # late fused input spec >>> ChannelSpec.coerce('rgb,disprity') <ChannelSpec(rgb,disprity) ...>
>>> # early and late fused input spec >>> ChannelSpec.coerce('rgb|ir,disprity') <ChannelSpec(rgb|ir,disprity) ...>
Example
>>> self = ChannelSpec('gray') >>> print('self.info = {}'.format(ub.repr2(self.info, nl=1))) >>> self = ChannelSpec('rgb') >>> print('self.info = {}'.format(ub.repr2(self.info, nl=1))) >>> self = ChannelSpec('rgb|disparity') >>> print('self.info = {}'.format(ub.repr2(self.info, nl=1))) >>> self = ChannelSpec('rgb|disparity,disparity') >>> print('self.info = {}'.format(ub.repr2(self.info, nl=1))) >>> self = ChannelSpec('rgb,disparity,flowx|flowy') >>> print('self.info = {}'.format(ub.repr2(self.info, nl=1)))
Example
>>> specs = [ >>> 'rgb', # and rgb input >>> 'rgb|disprity', # rgb early fused with disparity >>> 'rgb,disprity', # rgb early late with disparity >>> 'rgb|ir,disprity', # rgb early fused with ir and late fused with disparity >>> 3, # 3 unknown channels >>> ] >>> for spec in specs: >>> print('=======================') >>> print('spec = {!r}'.format(spec)) >>> # >>> self = ChannelSpec.coerce(spec) >>> print('self = {!r}'.format(self)) >>> sizes = self.sizes() >>> print('sizes = {!r}'.format(sizes)) >>> print('self.info = {}'.format(ub.repr2(self.info, nl=1))) >>> # >>> item = self._demo_item((1, 1), rng=0) >>> inputs = self.encode(item) >>> components = self.decode(inputs) >>> input_shapes = ub.map_vals(lambda x: x.shape, inputs) >>> component_shapes = ub.map_vals(lambda x: x.shape, components) >>> print('item = {}'.format(ub.repr2(item, precision=1))) >>> print('inputs = {}'.format(ub.repr2(inputs, precision=1))) >>> print('input_shapes = {}'.format(ub.repr2(input_shapes))) >>> print('components = {}'.format(ub.repr2(components, precision=1))) >>> print('component_shapes = {}'.format(ub.repr2(component_shapes, nl=1)))
- property spec¶
- property info¶
- classmethod coerce(data)[source]¶
Attempt to interpret the data as a channel specification
- Returns
ChannelSpec
Example
>>> from kwcoco.channel_spec import * # NOQA >>> data = FusedChannelSpec.coerce(3) >>> assert ChannelSpec.coerce(data).spec == 'u0|u1|u2' >>> data = ChannelSpec.coerce(3) >>> assert data.spec == 'u0|u1|u2' >>> assert ChannelSpec.coerce(data).spec == 'u0|u1|u2' >>> data = ChannelSpec.coerce('u:3') >>> assert data.normalize().spec == 'u.0|u.1|u.2'
- parse()[source]¶
Build internal representation
Example
>>> from kwcoco.channel_spec import * # NOQA >>> self = ChannelSpec('b1|b2|b3|rgb,B:3') >>> print(self.parse()) >>> print(self.normalize().parse()) >>> ChannelSpec('').parse()
Example
>>> base = ChannelSpec('rgb|disparity,flowx|r|flowy') >>> other = ChannelSpec('rgb') >>> self = base.intersection(other) >>> assert self.numel() == 4
- concise()[source]¶
Example
>>> self = ChannelSpec('b1|b2,b3|rgb|B.0,B.1|B.2') >>> print(self.concise().spec) b1|b2,b3|r|g|b|B.0,B.1:3
- normalize()[source]¶
Replace aliases with explicit single-band-per-code specs
- Returns
normalized spec
- Return type
Example
>>> self = ChannelSpec('b1|b2,b3|rgb,B:3') >>> normed = self.normalize() >>> print('self = {}'.format(self)) >>> print('normed = {}'.format(normed)) self = <ChannelSpec(b1|b2,b3|rgb,B:3)> normed = <ChannelSpec(b1|b2,b3|r|g|b,B.0|B.1|B.2)>
- fuse()[source]¶
Fuse all parts into an early fused channel spec
- Returns
FusedChannelSpec
Example
>>> from kwcoco.channel_spec import * # NOQA >>> self = ChannelSpec.coerce('b1|b2,b3|rgb,B:3') >>> fused = self.fuse() >>> print('self = {}'.format(self)) >>> print('fused = {}'.format(fused)) self = <ChannelSpec(b1|b2,b3|rgb,B:3)> fused = <FusedChannelSpec(b1|b2|b3|rgb|B:3)>
- streams()[source]¶
Breaks this spec up into one spec for each early-fused input stream
Example
self = ChannelSpec.coerce(‘r|g,B1|B2,fx|fy’) list(map(len, self.streams()))
- as_path()[source]¶
Returns a string suitable for use in a path.
Note, this may no longer be a valid channel spec
- difference(other)[source]¶
Set difference. Remove all instances of other channels from this set of channels.
Example
>>> from kwcoco.channel_spec import * >>> self = ChannelSpec('rgb|disparity,flowx|r|flowy') >>> other = ChannelSpec('rgb') >>> print(self.difference(other)) >>> other = ChannelSpec('flowx') >>> print(self.difference(other)) <ChannelSpec(disparity,flowx|flowy)> <ChannelSpec(r|g|b|disparity,r|flowy)>
Example
>>> from kwcoco.channel_spec import * >>> self = ChannelSpec('a|b,c|d') >>> new = self - {'a', 'b'} >>> len(new.sizes()) == 1 >>> empty = new - 'c|d' >>> assert empty.numel() == 0
- intersection(other)[source]¶
Set difference. Remove all instances of other channels from this set of channels.
Example
>>> from kwcoco.channel_spec import * >>> self = ChannelSpec('rgb|disparity,flowx|r|flowy') >>> other = ChannelSpec('rgb') >>> new = self.intersection(other) >>> print(new) >>> print(new.numel()) >>> other = ChannelSpec('flowx') >>> new = self.intersection(other) >>> print(new) >>> print(new.numel()) <ChannelSpec(r|g|b,r)> 4 <ChannelSpec(flowx)> 1
- union(other)[source]¶
Union simply tags on a second channel spec onto this one. Duplicates are maintained.
Example
>>> from kwcoco.channel_spec import * >>> self = ChannelSpec('rgb|disparity,flowx|r|flowy') >>> other = ChannelSpec('rgb') >>> new = self.union(other) >>> print(new) >>> print(new.numel()) >>> other = ChannelSpec('flowx') >>> new = self.union(other) >>> print(new) >>> print(new.numel()) <ChannelSpec(r|g|b|disparity,flowx|r|flowy,r|g|b)> 10 <ChannelSpec(r|g|b|disparity,flowx|r|flowy,flowx)> 8
- sizes()[source]¶
Number of dimensions for each fused stream channel
IE: The EARLY-FUSED channel sizes
Example
>>> self = ChannelSpec('rgb|disparity,flowx|flowy,B:10') >>> self.normalize().concise() >>> self.sizes()
- encode(item, axis=0, mode=1)[source]¶
Given a dictionary containing preloaded components of the network inputs, build a concatenated (fused) network representations of each input stream.
- Parameters
item (Dict[str, Tensor]) – a batch item containing unfused parts. each key should be a single-stream (optionally early fused) channel key.
axis (int, default=0) – concatenation dimension
- Returns
mapping between input stream and its early fused tensor input.
- Return type
Dict[str, Tensor]
Example
>>> from kwcoco.channel_spec import * # NOQA >>> import numpy as np >>> dims = (4, 4) >>> item = { >>> 'rgb': np.random.rand(3, *dims), >>> 'disparity': np.random.rand(1, *dims), >>> 'flowx': np.random.rand(1, *dims), >>> 'flowy': np.random.rand(1, *dims), >>> } >>> # Complex Case >>> self = ChannelSpec('rgb,disparity,rgb|disparity|flowx|flowy,flowx|flowy') >>> fused = self.encode(item) >>> input_shapes = ub.map_vals(lambda x: x.shape, fused) >>> print('input_shapes = {}'.format(ub.repr2(input_shapes, nl=1))) >>> # Simpler case >>> self = ChannelSpec('rgb|disparity') >>> fused = self.encode(item) >>> input_shapes = ub.map_vals(lambda x: x.shape, fused) >>> print('input_shapes = {}'.format(ub.repr2(input_shapes, nl=1)))
Example
>>> # Case where we have to break up early fused data >>> import numpy as np >>> dims = (40, 40) >>> item = { >>> 'rgb|disparity': np.random.rand(4, *dims), >>> 'flowx': np.random.rand(1, *dims), >>> 'flowy': np.random.rand(1, *dims), >>> } >>> # Complex Case >>> self = ChannelSpec('rgb,disparity,rgb|disparity,rgb|disparity|flowx|flowy,flowx|flowy,flowx,disparity') >>> inputs = self.encode(item) >>> input_shapes = ub.map_vals(lambda x: x.shape, inputs) >>> print('input_shapes = {}'.format(ub.repr2(input_shapes, nl=1)))
>>> # xdoctest: +REQUIRES(--bench) >>> #self = ChannelSpec('rgb|disparity,flowx|flowy') >>> import timerit >>> ti = timerit.Timerit(100, bestof=10, verbose=2) >>> for timer in ti.reset('mode=simple'): >>> with timer: >>> inputs = self.encode(item, mode=0) >>> for timer in ti.reset('mode=minimize-concat'): >>> with timer: >>> inputs = self.encode(item, mode=1)
- decode(inputs, axis=1)[source]¶
break an early fused item into its components
- Parameters
inputs (Dict[str, Tensor]) – dictionary of components
axis (int, default=1) – channel dimension
Example
>>> from kwcoco.channel_spec import * # NOQA >>> import numpy as np >>> dims = (4, 4) >>> item_components = { >>> 'rgb': np.random.rand(3, *dims), >>> 'ir': np.random.rand(1, *dims), >>> } >>> self = ChannelSpec('rgb|ir') >>> item_encoded = self.encode(item_components) >>> batch = {k: np.concatenate([v[None, :], v[None, :]], axis=0) ... for k, v in item_encoded.items()} >>> components = self.decode(batch)
Example
>>> # xdoctest: +REQUIRES(module:netharn, module:torch) >>> import torch >>> import numpy as np >>> dims = (4, 4) >>> components = { >>> 'rgb': np.random.rand(3, *dims), >>> 'ir': np.random.rand(1, *dims), >>> } >>> components = ub.map_vals(torch.from_numpy, components) >>> self = ChannelSpec('rgb|ir') >>> encoded = self.encode(components) >>> from netharn.data import data_containers >>> item = {k: data_containers.ItemContainer(v, stack=True) >>> for k, v in encoded.items()} >>> batch = data_containers.container_collate([item, item]) >>> components = self.decode(batch)
- component_indices(axis=2)[source]¶
Look up component indices within fused streams
Example
>>> dims = (4, 4) >>> inputs = ['flowx', 'flowy', 'disparity'] >>> self = ChannelSpec('disparity,flowx|flowy') >>> component_indices = self.component_indices() >>> print('component_indices = {}'.format(ub.repr2(component_indices, nl=1))) component_indices = { 'disparity': ('disparity', (slice(None, None, None), slice(None, None, None), slice(0, 1, None))), 'flowx': ('flowx|flowy', (slice(None, None, None), slice(None, None, None), slice(0, 1, None))), 'flowy': ('flowx|flowy', (slice(None, None, None), slice(None, None, None), slice(1, 2, None))), }
- kwcoco.channel_spec.subsequence_index(oset1, oset2)[source]¶
Returns a slice into the first items indicating the position of the second items if they exist.
This is a variant of the substring problem.
- Returns
None | slice
Example
>>> oset1 = ub.oset([1, 2, 3, 4, 5, 6]) >>> oset2 = ub.oset([2, 3, 4]) >>> index = subsequence_index(oset1, oset2) >>> assert index
>>> oset1 = ub.oset([1, 2, 3, 4, 5, 6]) >>> oset2 = ub.oset([2, 4, 3]) >>> index = subsequence_index(oset1, oset2) >>> assert not index
kwcoco.coco_dataset module¶
An implementation and extension of the original MS-COCO API [CocoFormat].
Extends the format to also include line annotations.
The following describes psuedo-code for the high level spec (some of which may
not be have full support in the Python API). A formal json-schema is defined in
kwcoco.coco_schema
.
An informal spec is as follows:
# All object categories are defined here.
category = {
'id': int,
'name': str, # unique name of the category
'supercategory': str, # parent category name
}
# Videos are used to manage collections or sequences of images.
# Frames do not necesarilly have to be aligned or uniform time steps
video = {
'id': int,
'name': str, # a unique name for this video.
'width': int # the base width of this video (all associated images must have this width)
'height': int # the base height of this video (all associated images must have this height)
# In the future this may be extended to allow pointing to video files
}
# Specifies how to find sensor data of a particular scene at a particular
# time. This is usually paths to rgb images, but auxiliary information
# can be used to specify multiple bands / etc...
# NOTE: in the future we will transition from calling these auxiliary items
# to calling these asset items. As such the key will change from
# "auxiliary" to "asset". The API will be updated to maintain backwards
# compatibility while this transition occurs.
image = {
'id': int,
'name': str, # an encouraged but optional unique name
'file_name': str, # relative path to the "base" image data (optional if auxiliary items are specified)
'width': int, # pixel width of "base" image
'height': int, # pixel height of "base" image
'channels': <ChannelSpec>, # a string encoding of the channels in the main image (optional if auxiliary items are specified)
'auxiliary': [ # information about any auxiliary channels / bands
{
'file_name': str, # relative path to associated file
'channels': <ChannelSpec>, # a string encoding
'width': <int> # pixel width of image asset
'height': <int> # pixel height of image asset
'warp_aux_to_img': <TransformSpec>, # tranform from "base" image space to auxiliary/asset space. (identity if unspecified)
'quantization': <QuantizationSpec>, # indicates that the underlying data was quantized
}, ...
]
'video_id': str # if this image is a frame in a video sequence, this id is shared by all frames in that sequence.
'timestamp': str | int # a iso-string timestamp or an integer in flicks.
'frame_index': int # ordinal frame index which can be used if timestamp is unknown.
'warp_img_to_vid': <TransformSpec> # a transform image space to video space (identity if unspecified), can be used for sensor alignment or video stabilization
}
TransformSpec:
The spec can be anything coercable to a kwimage.Affine object.
This can be an explicit affine transform matrix like:
{'type': 'affine': 'matrix': <a-3x3 matrix>},
But it can also be a concise dict containing one or more of these keys
{
'scale': <float|Tuple[float, float]>,
'offset': <float|Tuple[float, float]>,
'skew': <float>,
'theta': <float>, # radians counter-clock-wise
}
ChannelSpec:
This is a string that describes the channel composition of an image.
For the purposes of kwcoco, separate different channel names with a
pipe ('|'). If the spec is not specified, methods may fall back on
grayscale or rgb processing. There are special string. For instance
'rgb' will expand into 'r|g|b'. In other applications you can "late
fuse" inputs by separating them with a "," and "early fuse" by
separating with a "|". Early fusion returns a solid array/tensor, late
fusion returns separated arrays/tensors.
QuantizationSpec:
This is a dictionary of the form:
{
'orig_min': <float>, # min original intensity
'orig_max': <float>, # min original intensity
'quant_min': <int>, # min quantized intensity
'quant_max': <int>, # max quantized intensity
'nodata': <int|None>, # integer value to interpret as nan
}
# Ground truth is specified as annotations, each belongs to a spatial
# region in an image. This must reference a subregion of the image in pixel
# coordinates. Additional non-schma properties can be specified to track
# location in other coordinate systems. Annotations can be linked over time
# by specifying track-ids.
annotation = {
'id': int,
'image_id': int,
'category_id': int,
'track_id': <int | str | uuid> # indicates association between annotations across images
'bbox': [tl_x, tl_y, w, h], # xywh format)
'score' : float,
'prob' : List[float],
'weight' : float,
'caption': str, # a text caption for this annotation
'keypoints' : <Keypoints | List[int] > # an accepted keypoint format
'segmentation': <RunLengthEncoding | Polygon | MaskPath | WKT >, # an accepted segmentation format
}
# A dataset bundles a manifest of all aformentioned data into one structure.
dataset = {
'categories': [category, ...],
'videos': [video, ...]
'images': [image, ...]
'annotations': [annotation, ...]
'licenses': [],
'info': [],
}
Polygon:
A flattened list of xy coordinates.
[x1, y1, x2, y2, ..., xn, yn]
or a list of flattened list of xy coordinates if the CCs are disjoint
[[x1, y1, x2, y2, ..., xn, yn], [x1, y1, ..., xm, ym],]
Note: the original coco spec does not allow for holes in polygons.
We also allow a non-standard dictionary encoding of polygons
{'exterior': [(x1, y1)...],
'interiors': [[(x1, y1), ...], ...]}
TODO: Support WTK
RunLengthEncoding:
The RLE can be in a special bytes encoding or in a binary array
encoding. We reuse the original C functions are in [PyCocoToolsMask]_
in ``kwimage.structs.Mask`` to provide a convinient way to abstract
this rather esoteric bytes encoding.
For pure python implementations see kwimage:
Converting from an image to RLE can be done via kwimage.run_length_encoding
Converting from RLE back to an image can be done via:
kwimage.decode_run_length
For compatibility with the COCO specs ensure the binary flags
for these functions are set to true.
Keypoints:
Annotation keypoints may also be specified in this non-standard (but
ultimately more general) way:
'annotations': [
{
'keypoints': [
{
'xy': <x1, y1>,
'visible': <0 or 1 or 2>,
'keypoint_category_id': <kp_cid>,
'keypoint_category': <kp_name, optional>, # this can be specified instead of an id
}, ...
]
}, ...
],
'keypoint_categories': [{
'name': <str>,
'id': <int>, # an id for this keypoint category
'supercategory': <kp_name> # name of coarser parent keypoint class (for hierarchical keypoints)
'reflection_id': <kp_cid> # specify only if the keypoint id would be swapped with another keypoint type
},...
]
In this scheme the "keypoints" property of each annotation (which used
to be a list of floats) is now specified as a list of dictionaries that
specify each keypoints location, id, and visibility explicitly. This
allows for things like non-unique keypoints, partial keypoint
annotations. This also removes the ordering requirement, which makes it
simpler to keep track of each keypoints class type.
We also have a new top-level dictionary to specify all the possible
keypoint categories.
TODO: Support WTK
Auxiliary Channels / Image Assets:
For multimodal or multispectral images it is possible to specify
auxiliary channels in an image dictionary as follows:
{
'id': int,
'file_name': str, # path to the "base" image (may be None)
'name': str, # a unique name for the image (must be given if file_name is None)
'channels': <ChannelSpec>, # a spec code that indicates the layout of the "base" image channels.
'auxiliary': [ # information about auxiliary channels
{
'file_name': str,
'channels': <ChannelSpec>
}, ... # can have many auxiliary channels with unique specs
]
}
Note that specifing a filename / channels for the base image is not
necessary, and mainly useful for augmenting an existing single-image
dataset with multimodal information. Typically if an image consists of
more than one file, all file information should be stored in the
"auxiliary" or "assets" list.
NEW DOCS:
In an MSI use case you should think of the "auxiliary" list as a
list of single file assets that are composed to make the entire
image. Your assets might include sensed bands, computed features,
or quality information. For instance a list of auxiliary items may
look like this:
image = {
"name": "my_msi_image",
"width": 400,
"height": 400,
"video_id": 2,
"timestamp": "2020-01-1",
"frame_index": 5,
"warp_img_to_vid": {"type": "affine", "scale", 1.4},
"auxiliary": [
{"channels": "red|green|blue": "file_name": "rgb.tif", "warp_aux_to_img": {"scale": 1.0}, "height": 400, "width": 400, ...},
...
{"channels": "cloudmask": "file_name": "cloudmask.tif", "warp_aux_to_img": {"scale": 4.0}, "height": 100, "width": 100, ...},
{"channels": "nir": "file_name": "nir.tif", "warp_aux_to_img": {"scale": 2.0}, "height": 200, "width": 200, ...},
{"channels": "swir": "file_name": "swir.tif", "warp_aux_to_img": {"scale": 2.0}, "height": 200, "width": 200, ...},
{"channels": "model1_predictions:0.6": "file_name": "model1_preds.tif", "warp_aux_to_img": {"scale": 8.0}, "height": 50, "width": 50, ...},
{"channels": "model2_predictions:0.3": "file_name": "model2_preds.tif", "warp_aux_to_img": {"scale": 8.0}, "height": 50, "width": 50, ...},
]
}
Note that there is no file_name or channels parameter in the image
object itself. This pattern indicates that image is composed of
multiple assets. One could indicate that an asset is primary by
giving its information to the parent image, but for better STAC
compatibility, all assets for MSI images should simply be listed
as "auxiliary" items.
Video Sequences:
For video sequences, we add the following video level index:
'videos': [
{ 'id': <int>, 'name': <video_name:str> },
]
Note that the videos might be given as encoded mp4/avi/etc.. files (in
which case the name should correspond to a path) or as a series of
frames in which case the images should be used to index the extracted
frames and information in them.
Then image dictionaries are augmented as follows:
{
'video_id': str # optional, if this image is a frame in a video sequence, this id is shared by all frames in that sequence.
'timestamp': int # optional, timestamp (ideally in flicks), used to identify the timestamp of the frame. Only applicable video inputs.
'frame_index': int # optional, ordinal frame index which can be used if timestamp is unknown.
}
And annotations are augmented as follows:
{
'track_id': <int | str | uuid> # optional, indicates association between annotations across frames
}
Note
The main object in this file is CocoDataset
, which is composed of
several mixin classes. See the class and method documentation for more
details.
Todo
[ ] Use ijson to lazilly load pieces of the dataset in the background or on demand. This will give us faster access to categories / images, whereas we will always have to wait for annotations etc…
[X] Should img_root be changed to bundle_dpath?
[ ] Read video data, return numpy arrays (requires API for images)
[ ] Spec for video URI, and convert to frames @ framerate function.
[ ] Document channel spec
[X] remove videos
References
- CocoFormat
- PyCocoToolsMask
https://github.com/nightrome/cocostuffapi/blob/master/PythonAPI/pycocotools/mask.py
- CocoTutorial
https://www.immersivelimit.com/tutorials/create-coco-annotations-from-scratch/#coco-dataset-format
- class kwcoco.coco_dataset.MixinCocoDepricate[source]¶
Bases:
object
These functions are marked for deprication and may be removed at any time
- class kwcoco.coco_dataset.MixinCocoAccessors[source]¶
Bases:
object
TODO: better name
- delayed_load(gid, channels=None, space='image')[source]¶
Experimental method
- Parameters
gid (int) – image id to load
channels (kwcoco.FusedChannelSpec) – specific channels to load. if unspecified, all channels are loaded.
space (str) – can either be “image” for loading in image space, or “video” for loading in video space.
Todo
- [X] Currently can only take all or none of the channels from each
base-image / auxiliary dict. For instance if the main image is r|g|b you can’t just select g|b at the moment.
- [X] The order of the channels in the delayed load should
match the requested channel order.
[X] TODO: add nans to bands that don’t exist or throw an error
Example
>>> import kwcoco >>> gid = 1 >>> # >>> self = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> delayed = self.delayed_load(gid) >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> # >>> self = kwcoco.CocoDataset.demo('shapes8') >>> delayed = self.delayed_load(gid) >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize()))
>>> crop = delayed.crop((slice(0, 3), slice(0, 3))) >>> crop.finalize()
>>> # TODO: should only select the "red" channel >>> self = kwcoco.CocoDataset.demo('shapes8') >>> delayed = self.delayed_load(gid, channels='r')
>>> import kwcoco >>> gid = 1 >>> # >>> self = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> delayed = self.delayed_load(gid, channels='B1|B2', space='image') >>> print('delayed = {!r}'.format(delayed)) >>> delayed = self.delayed_load(gid, channels='B1|B2|B11', space='image') >>> print('delayed = {!r}'.format(delayed)) >>> delayed = self.delayed_load(gid, channels='B8|B1', space='video') >>> print('delayed = {!r}'.format(delayed))
>>> delayed = self.delayed_load(gid, channels='B8|foo|bar|B1', space='video') >>> print('delayed = {!r}'.format(delayed))
- load_image(gid_or_img, channels=None)[source]¶
Reads an image from disk and
- Parameters
gid_or_img (int | dict) – image id or image dict
channels (str | None) – if specified, load data from auxiliary channels instead
- Returns
the image
- Return type
np.ndarray
Todo
- [ ] allow specification of multiple channels - use delayed image
for this.
- get_image_fpath(gid_or_img, channels=None)[source]¶
Returns the full path to the image
- Parameters
gid_or_img (int | dict) – image id or image dict
channels (str, default=None) – if specified, return a path to data containing auxiliary channels instead
- Returns
full path to the image
- Return type
PathLike
- get_auxiliary_fpath(gid_or_img, channels)[source]¶
Returns the full path to auxiliary data for an image
- Parameters
gid_or_img (int | dict) – an image or its id
channels (str) – the auxiliary channel to load (e.g. disparity)
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('shapes8', aux=True) >>> self.get_auxiliary_fpath(1, 'disparity')
- load_annot_sample(aid_or_ann, image=None, pad=None)[source]¶
Reads the chip of an annotation. Note this is much less efficient than using a sampler, but it doesn’t require disk cache.
Maybe depricate?
- Parameters
aid_or_int (int | dict) – annot id or dict
image (ArrayLike, default=None) – preloaded image (note: this process is inefficient unless image is specified)
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> sample = self.load_annot_sample(2, pad=100) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(sample['im']) >>> kwplot.show_if_requested()
- category_graph()[source]¶
Construct a networkx category hierarchy
- Returns
graph: a directed graph where category names are the nodes, supercategories define edges, and items in each category dict (e.g. category id) are added as node properties.
- Return type
Example
>>> self = CocoDataset.demo() >>> graph = self.category_graph() >>> assert 'astronaut' in graph.nodes() >>> assert 'keypoints' in graph.nodes['human']
- object_categories()[source]¶
Construct a consistent CategoryTree representation of object classes
- Returns
category data structure
- Return type
Example
>>> self = CocoDataset.demo() >>> classes = self.object_categories() >>> print('classes = {}'.format(classes))
- class kwcoco.coco_dataset.MixinCocoExtras[source]¶
Bases:
object
Misc functions for coco
- classmethod coerce(key, **kw)[source]¶
Attempt to transform the input into the intended CocoDataset.
- Parameters
key – this can either be an instance of a CocoDataset, a string URI pointing to an on-disk dataset, or a special key for creating demodata.
**kw – passed to whatever constructor is chosen (if any)
Example
>>> # test coerce for various input methods >>> import kwcoco >>> from kwcoco.coco_sql_dataset import assert_dsets_allclose >>> dct_dset = kwcoco.CocoDataset.coerce('special:shapes8') >>> copy1 = kwcoco.CocoDataset.coerce(dct_dset) >>> copy2 = kwcoco.CocoDataset.coerce(dct_dset.fpath) >>> assert assert_dsets_allclose(dct_dset, copy1) >>> assert assert_dsets_allclose(dct_dset, copy2) >>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> sql_dset = dct_dset.view_sql() >>> copy3 = kwcoco.CocoDataset.coerce(sql_dset) >>> copy4 = kwcoco.CocoDataset.coerce(sql_dset.fpath) >>> assert assert_dsets_allclose(dct_dset, sql_dset) >>> assert assert_dsets_allclose(dct_dset, copy3) >>> assert assert_dsets_allclose(dct_dset, copy4)
- classmethod demo(key='photos', **kwargs)[source]¶
Create a toy coco dataset for testing and demo puposes
- Parameters
key (str, default=photos) – Either ‘photos’, ‘shapes’, or ‘vidshapes’. There are also special sufixes that can control behavior.
Basic options that define which flavor of demodata to generate are: photos, shapes, and vidshapes. A numeric suffix e.g. vidshapes8 can be specified to indicate the size of the generated demo dataset. There are other special suffixes that are available. See the code in this function for explicit details on what is allowed.
TODO: better documentation for these demo datasets.
As a quick summary: the vidshapes key is the most robust and mature demodata set, and here are several useful variants of the vidshapes key.
vidshapes8 - the 8 suffix is the number of videos in this case.
vidshapes8-multispectral - generate 8 multispectral videos.
vidshapes8-msi - msi is an alias for multispectral.
(4) vidshapes8-frames5 - generate 8 videos with 5 frames each. (4) vidshapes2-speed0.1-frames7 - generate 2 videos with 7 frames where the objects move with with a speed of 0.1.
**kwargs – if key is shapes, these arguments are passed to toydata generation. The Kwargs section of this docstring documents a subset of the available options. For full details, see
demodata_toy_dset()
andrandom_video_dset()
.
- Kwargs:
image_size (Tuple[int, int]): width / height size of the images
- dpath (str): path to the output image directory, defaults to using
kwcoco cache dir.
aux (bool): if True generates dummy auxiliary channels
- rng (int | RandomState, default=0):
random number generator or seed
verbose (int, default=3): verbosity mode
Example
>>> # Basic demodata keys >>> print(CocoDataset.demo('photos', verbose=1)) >>> print(CocoDataset.demo('shapes', verbose=1)) >>> print(CocoDataset.demo('vidshapes', verbose=1)) >>> # Varaints of demodata keys >>> print(CocoDataset.demo('shapes8', verbose=0)) >>> print(CocoDataset.demo('shapes8-msi', verbose=0)) >>> print(CocoDataset.demo('shapes8-frames1-speed0.2-msi', verbose=0))
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes5', num_frames=5, >>> verbose=0, rng=None) >>> dset = kwcoco.CocoDataset.demo('vidshapes5', num_frames=5, >>> num_tracks=4, verbose=0, rng=44) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> pnums = kwplot.PlotNums(nSubplots=len(dset.index.imgs)) >>> fnum = 1 >>> for gx, gid in enumerate(dset.index.imgs.keys()): >>> canvas = dset.draw_image(gid=gid) >>> kwplot.imshow(canvas, pnum=pnums[gx], fnum=fnum) >>> #dset.show_image(gid=gid, pnum=pnums[gx]) >>> kwplot.show_if_requested()
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes5-aux', num_frames=1, >>> verbose=0, rng=None)
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes1-multispectral', num_frames=5, >>> verbose=0, rng=None) >>> # This is the first use-case of image names >>> assert len(dset.index.file_name_to_img) == 0, ( >>> 'the multispectral demo case has no "base" image') >>> assert len(dset.index.name_to_img) == len(dset.index.imgs) == 5 >>> dset.remove_images([1]) >>> assert len(dset.index.name_to_img) == len(dset.index.imgs) == 4 >>> dset.remove_videos([1]) >>> assert len(dset.index.name_to_img) == len(dset.index.imgs) == 0
- classmethod random(rng=None)[source]¶
Creates a random CocoDataset according to distribution parameters
Todo
[ ] parametarize
- corrupted_images(check_aux=False, verbose=0)[source]¶
Check for images that don’t exist or can’t be opened
- rename_categories(mapper, rebuild=True, merge_policy='ignore')[source]¶
Rename categories with a potentially coarser categorization.
- Parameters
mapper (dict | Callable) – maps old names to new names. If multiple names are mapped to the same category, those categories will be merged.
merge_policy (str) – How to handle multiple categories that map to the same name. Can be update or ignore.
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> self.rename_categories({'astronomer': 'person', >>> 'astronaut': 'person', >>> 'mouth': 'person', >>> 'helmet': 'hat'}) >>> assert 'hat' in self.name_to_cat >>> assert 'helmet' not in self.name_to_cat >>> # Test merge case >>> self = kwcoco.CocoDataset.demo() >>> mapper = { >>> 'helmet': 'rocket', >>> 'astronomer': 'rocket', >>> 'human': 'rocket', >>> 'mouth': 'helmet', >>> 'star': 'gas' >>> } >>> self.rename_categories(mapper)
- reroot(new_root=None, old_prefix=None, new_prefix=None, absolute=False, check=True, safe=True, verbose=0)[source]¶
Modify the prefix of the image/data paths onto a new image/data root.
- Parameters
new_root (str | None) – New image root. If unspecified the current
self.bundle_dpath
is used. If old_prefix and new_prefix are unspecified, they will attempt to be determined based on the current root (which assumes the file paths exist at that root) and this new root. Defaults to None.old_prefix (str | None) – If specified, removes this prefix from file names. This also prevents any inferences that might be made via “new_root”. Defaults to None.
new_prefix (str | None) – If specified, adds this prefix to the file names. This also prevents any inferences that might be made via “new_root”. Defaults to None.
absolute (bool) – if True, file names are stored as absolute paths, otherwise they are relative to the new image root. Defaults to False.
check (bool) – if True, checks that the images all exist. Defaults to True.
safe (bool) – if True, does not overwrite values until all checks pass. Defaults to True.
verbose (int) – verbosity level, default=0.
CommandLine
xdoctest -m kwcoco.coco_dataset MixinCocoExtras.reroot
Todo
[ ] Incorporate maximum ordered subtree embedding?
Example
>>> import kwcoco >>> def report(dset, name): >>> gid = 1 >>> abs_fpath = dset.get_image_fpath(gid) >>> rel_fpath = dset.index.imgs[gid]['file_name'] >>> color = 'green' if exists(abs_fpath) else 'red' >>> print('strategy_name = {!r}'.format(name)) >>> print(ub.color_text('abs_fpath = {!r}'.format(abs_fpath), color)) >>> print('rel_fpath = {!r}'.format(rel_fpath)) >>> dset = self = kwcoco.CocoDataset.demo() >>> # Change base relative directory >>> bundle_dpath = ub.expandpath('~') >>> print('ORIG self.imgs = {!r}'.format(self.imgs)) >>> print('ORIG dset.bundle_dpath = {!r}'.format(dset.bundle_dpath)) >>> print('NEW bundle_dpath = {!r}'.format(bundle_dpath)) >>> self.reroot(bundle_dpath) >>> report(self, 'self') >>> print('NEW self.imgs = {!r}'.format(self.imgs)) >>> assert self.imgs[1]['file_name'].startswith('.cache')
>>> # Use absolute paths >>> self.reroot(absolute=True) >>> assert self.imgs[1]['file_name'].startswith(bundle_dpath)
>>> # Switch back to relative paths >>> self.reroot() >>> assert self.imgs[1]['file_name'].startswith('.cache')
Example
>>> # demo with auxiliary data >>> import kwcoco >>> self = kwcoco.CocoDataset.demo('shapes8', aux=True) >>> bundle_dpath = ub.expandpath('~') >>> print(self.imgs[1]['file_name']) >>> print(self.imgs[1]['auxiliary'][0]['file_name']) >>> self.reroot(new_root=bundle_dpath) >>> print(self.imgs[1]['file_name']) >>> print(self.imgs[1]['auxiliary'][0]['file_name']) >>> assert self.imgs[1]['file_name'].startswith('.cache') >>> assert self.imgs[1]['auxiliary'][0]['file_name'].startswith('.cache')
- property data_root¶
In the future we will deprecate data_root for bundle_dpath
- property img_root¶
In the future we will deprecate img_root for bundle_dpath
- property data_fpath¶
data_fpath is an alias of fpath
- class kwcoco.coco_dataset.MixinCocoObjects[source]¶
Bases:
object
Expose methods to construct object lists / groups.
This is an alternative vectorized ORM-like interface to the coco dataset
- annots(aids=None, gid=None, trackid=None)[source]¶
Return vectorized annotation objects
- Parameters
aids (List[int]) – annotation ids to reference, if unspecified all annotations are returned.
gid (int) – return all annotations that belong to this image id. mutually exclusive with other arguments.
trackid (int) – return all annotations that belong to this track. mutually exclusive with other arguments.
- Returns
vectorized annotation object
- Return type
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> annots = self.annots() >>> print(annots) <Annots(num=11)> >>> sub_annots = annots.take([1, 2, 3]) >>> print(sub_annots) <Annots(num=3)> >>> print(ub.repr2(sub_annots.get('bbox', None))) [ [350, 5, 130, 290], None, None, ]
- images(gids=None, vidid=None, names=None)[source]¶
Return vectorized image objects
- Parameters
gids (List[int]) – image ids to reference, if unspecified all images are returned.
vidid (int) – returns all images that belong to this video id. mutually exclusive with gids arg.
names (List[str]) – lookup images by their names.
- Returns
vectorized image object
- Return type
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> images = self.images() >>> print(images) <Images(num=3)>
>>> self = kwcoco.CocoDataset.demo('vidshapes2') >>> vidid = 1 >>> images = self.images(vidid=vidid) >>> assert all(v == vidid for v in images.lookup('video_id')) >>> print(images) <Images(num=2)>
- categories(cids=None)[source]¶
Return vectorized category objects
- Parameters
cids (List[int]) – category ids to reference, if unspecified all categories are returned.
- Returns
vectorized category object
- Return type
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> categories = self.categories() >>> print(categories) <Categories(num=8)>
- videos(vidids=None, names=None)[source]¶
Return vectorized video objects
- Parameters
vidids (List[int]) – video ids to reference, if unspecified all videos are returned.
names (List[str]) – lookup videos by their name.
- Returns
vectorized video object
- Return type
Todo
- [ ] This conflicts with what should be the property that
should redirect to
index.videos
, we should resolve this somehow. E.g. all other main members of the index (anns, imgs, cats) have a toplevel dataset property, we don’t have one for videos because the name we would pick conflicts with this.
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('vidshapes2') >>> videos = self.videos() >>> print(videos) >>> videos.lookup('name') >>> videos.lookup('id') >>> print('videos.objs = {}'.format(ub.repr2(videos.objs[0:2], nl=1)))
- class kwcoco.coco_dataset.MixinCocoStats[source]¶
Bases:
object
Methods for getting stats about the dataset
- property n_annots¶
The number of annotations in the dataset
- property n_images¶
The number of images in the dataset
- property n_cats¶
The number of categories in the dataset
- property n_videos¶
The number of videos in the dataset
- keypoint_annotation_frequency()[source]¶
DEPRECATED
Example
>>> from kwcoco.coco_dataset import * >>> self = CocoDataset.demo('shapes', rng=0) >>> hist = self.keypoint_annotation_frequency() >>> hist = ub.odict(sorted(hist.items())) >>> # FIXME: for whatever reason demodata generation is not determenistic when seeded >>> print(ub.repr2(hist)) # xdoc: +IGNORE_WANT { 'bot_tip': 6, 'left_eye': 14, 'mid_tip': 6, 'right_eye': 14, 'top_tip': 6, }
- category_annotation_frequency()[source]¶
Reports the number of annotations of each category
Example
>>> from kwcoco.coco_dataset import * >>> self = CocoDataset.demo() >>> hist = self.category_annotation_frequency() >>> print(ub.repr2(hist)) { 'astroturf': 0, 'human': 0, 'astronaut': 1, 'astronomer': 1, 'helmet': 1, 'rocket': 1, 'mouth': 2, 'star': 5, }
- category_annotation_type_frequency()[source]¶
DEPRECATED
Reports the number of annotations of each type for each category
Example
>>> self = CocoDataset.demo() >>> hist = self.category_annotation_frequency() >>> print(ub.repr2(hist))
- conform(**config)[source]¶
Make the COCO file conform a stricter spec, infers attibutes where possible.
Corresponds to the
kwcoco conform
CLI tool.- KWArgs:
**config :
pycocotools_info (default=True): returns info required by pycocotools
ensure_imgsize (default=True): ensure image size is populated
legacy (default=False): if true tries to convert data structures to items compatible with the original pycocotools spec
workers (int): number of parallel jobs for IO tasks
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('shapes8') >>> dset.index.imgs[1].pop('width') >>> dset.conform(legacy=True) >>> assert 'width' in dset.index.imgs[1] >>> assert 'area' in dset.index.anns[1]
- validate(**config)[source]¶
Performs checks on this coco dataset.
Corresponds to the
kwcoco validate
CLI tool.- Parameters
**config – schema (default=True): if True, validate the json-schema
unique (default=True): if True, validate unique secondary keys
missing (default=True): if True, validate registered files exist
corrupted (default=False): if True, validate data in registered files
channels (default=True): if True, validate that channels in auxiliary/asset items are all unique.
require_relative (default=False): if True, causes validation to fail if paths are non-portable, i.e. all paths must be relative to the bundle directory. if>0, paths must be relative to bundle root. if>1, paths must be inside bundle root.
img_attrs (default=’warn’): if truthy, check that image attributes contain width and height entries. If ‘warn’, then warn if they do not exist. If ‘error’, then fail.
verbose (default=1): verbosity flag
fastfail (default=False): if True raise errors immediately
- Returns
- result containing keys -
status (bool): False if any errors occurred errors (List[str]): list of all error messages missing (List): List of any missing images corrupted (List): List of any corrupted images
- Return type
- SeeAlso:
_check_integrity()
- performs internal checks
Example
>>> from kwcoco.coco_dataset import * >>> self = CocoDataset.demo() >>> import pytest >>> with pytest.warns(UserWarning): >>> result = self.validate() >>> assert not result['errors'] >>> assert result['warnings']
- stats(**kwargs)[source]¶
Compute summary statistics to describe the dataset at a high level
This function corresponds to
kwcoco.cli.coco_stats
.- KWargs:
basic(bool, default=True): return basic stats’ extended(bool, default=True): return extended stats’ catfreq(bool, default=True): return category frequency stats’ boxes(bool, default=False): return bounding box stats’
annot_attrs(bool, default=True): return annotation attribute information’ image_attrs(bool, default=True): return image attribute information’
- Returns
info
- Return type
- basic_stats()[source]¶
Reports number of images, annotations, and categories.
- SeeAlso:
kwcoco.coco_dataset.MixinCocoStats.basic_stats()
kwcoco.coco_dataset.MixinCocoStats.extended_stats()
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> print(ub.repr2(self.basic_stats())) { 'n_anns': 11, 'n_imgs': 3, 'n_videos': 0, 'n_cats': 8, }
>>> from kwcoco.demo.toydata_video import random_video_dset >>> dset = random_video_dset(render=True, num_frames=2, num_tracks=10, rng=0) >>> print(ub.repr2(dset.basic_stats())) { 'n_anns': 20, 'n_imgs': 2, 'n_videos': 1, 'n_cats': 3, }
- extended_stats()[source]¶
Reports number of images, annotations, and categories.
- SeeAlso:
kwcoco.coco_dataset.MixinCocoStats.basic_stats()
kwcoco.coco_dataset.MixinCocoStats.extended_stats()
Example
>>> self = CocoDataset.demo() >>> print(ub.repr2(self.extended_stats()))
- boxsize_stats(anchors=None, perclass=True, gids=None, aids=None, verbose=0, clusterkw={}, statskw={})[source]¶
Compute statistics about bounding box sizes.
Also computes anchor boxes using kmeans if
anchors
is specified.- Parameters
anchors (int) – if specified also computes box anchors via KMeans clustering
perclass (bool) – if True also computes stats for each category
gids (List[int], default=None) – if specified only compute stats for these image ids.
aids (List[int], default=None) – if specified only compute stats for these annotation ids.
verbose (int) – verbosity level
clusterkw (dict) – kwargs for
sklearn.cluster.KMeans
used if computing anchors.statskw (dict) – kwargs for
kwarray.stats_dict()
- Returns
Stats are returned in width-height format.
- Return type
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('shapes32') >>> infos = self.boxsize_stats(anchors=4, perclass=False) >>> print(ub.repr2(infos, nl=-1, precision=2))
>>> infos = self.boxsize_stats(gids=[1], statskw=dict(median=True)) >>> print(ub.repr2(infos, nl=-1, precision=2))
- find_representative_images(gids=None)[source]¶
Find images that have a wide array of categories.
Attempt to find the fewest images that cover all categories using images that contain both a large and small number of annotations.
- Parameters
gids (None | List) – Subset of image ids to consider when finding representative images. Uses all images if unspecified.
- Returns
list of image ids determined to be representative
- Return type
List
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> gids = self.find_representative_images() >>> print('gids = {!r}'.format(gids)) >>> gids = self.find_representative_images([3]) >>> print('gids = {!r}'.format(gids))
>>> self = kwcoco.CocoDataset.demo('shapes8') >>> gids = self.find_representative_images() >>> print('gids = {!r}'.format(gids)) >>> valid = {7, 1} >>> gids = self.find_representative_images(valid) >>> assert valid.issuperset(gids) >>> print('gids = {!r}'.format(gids))
- class kwcoco.coco_dataset.MixinCocoDraw[source]¶
Bases:
object
Matplotlib / display functionality
- draw_image(gid, channels=None)[source]¶
Use kwimage to draw all annotations on an image and return the pixels as a numpy array.
- Parameters
gid (int) – image id to draw
channels (kwcoco.ChannelSpec) – the channel to draw on
- Returns
canvas
- Return type
ndarray
- SeeAlso
kwcoco.coco_dataset.MixinCocoDraw.draw_image()
kwcoco.coco_dataset.MixinCocoDraw.show_image()
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('shapes8') >>> self.draw_image(1) >>> # Now you can dump the annotated image to disk / whatever >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(canvas)
- show_image(gid=None, aids=None, aid=None, channels=None, **kwargs)[source]¶
Use matplotlib to show an image with annotations overlaid
- Parameters
gid (int) – image to show
aids (list) – aids to highlight within the image
aid (int) – a specific aid to focus on. If gid is not give, look up gid based on this aid.
**kwargs – show_annots, show_aid, show_catname, show_kpname, show_segmentation, title, show_gid, show_filename, show_boxes,
- SeeAlso
kwcoco.coco_dataset.MixinCocoDraw.draw_image()
kwcoco.coco_dataset.MixinCocoDraw.show_image()
Example
>>> # xdoctest: +REQUIRES(--show) >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-msi') >>> dset.show_image(gid=1, channels='B8')
- class kwcoco.coco_dataset.MixinCocoAddRemove[source]¶
Bases:
object
Mixin functions to dynamically add / remove annotations images and categories while maintaining lookup indexes.
- add_video(name, id=None, **kw)[source]¶
Register a new video with the dataset
- Parameters
name (str) – Unique name for this video.
id (None | int) – ADVANCED. Force using this image id.
**kw – stores arbitrary key/value pairs in this new video
- Returns
the video id assigned to the new video
- Return type
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset() >>> print('self.index.videos = {}'.format(ub.repr2(self.index.videos, nl=1))) >>> print('self.index.imgs = {}'.format(ub.repr2(self.index.imgs, nl=1))) >>> print('self.index.vidid_to_gids = {!r}'.format(self.index.vidid_to_gids))
>>> vidid1 = self.add_video('foo', id=3) >>> vidid2 = self.add_video('bar') >>> vidid3 = self.add_video('baz') >>> print('self.index.videos = {}'.format(ub.repr2(self.index.videos, nl=1))) >>> print('self.index.imgs = {}'.format(ub.repr2(self.index.imgs, nl=1))) >>> print('self.index.vidid_to_gids = {!r}'.format(self.index.vidid_to_gids))
>>> gid1 = self.add_image('foo1.jpg', video_id=vidid1, frame_index=0) >>> gid2 = self.add_image('foo2.jpg', video_id=vidid1, frame_index=1) >>> gid3 = self.add_image('foo3.jpg', video_id=vidid1, frame_index=2) >>> gid4 = self.add_image('bar1.jpg', video_id=vidid2, frame_index=0) >>> print('self.index.videos = {}'.format(ub.repr2(self.index.videos, nl=1))) >>> print('self.index.imgs = {}'.format(ub.repr2(self.index.imgs, nl=1))) >>> print('self.index.vidid_to_gids = {!r}'.format(self.index.vidid_to_gids))
>>> self.remove_images([gid2]) >>> print('self.index.vidid_to_gids = {!r}'.format(self.index.vidid_to_gids))
- add_image(file_name=None, id=None, **kw)[source]¶
Register a new image with the dataset
- Parameters
file_name (str | None) – relative or absolute path to image. if not given, then “name” must be specified and we will exepect that “auxiliary” assets are eventually added.
id (None | int) – ADVANCED. Force using this image id.
name (str) – a unique key to identify this image
width (int) – base width of the image
height (int) – base height of the image
channels (ChannelSpec) – specification of base channels. Only relevant if file_name is given.
auxiliary (List[Dict]) – specification of auxiliary assets. See CocoImage.add_auxiliary_item for details
video_id (int) – id of parent video, if applicable
frame_index (int) – frame index in parent video
timestamp (number | str) – timestamp of frame index
**kw – stores arbitrary key/value pairs in this new image
- Returns
the image id assigned to the new image
- Return type
- SeeAlso:
Example
>>> self = CocoDataset.demo() >>> import kwimage >>> gname = kwimage.grab_test_image_fpath('paraview') >>> gid = self.add_image(gname) >>> assert self.imgs[gid]['file_name'] == gname
- add_auxiliary_item(gid, file_name=None, channels=None, **kwargs)[source]¶
Adds an auxiliary / asset item to the image dictionary.
- Parameters
gid (int) – The image id to add the auxiliary/asset item to.
file_name (str | None) – The name of the file relative to the bundle directory. If unspecified, imdata must be given.
channels (str | kwcoco.FusedChannelSpec) – The channel code indicating what each of the bands represents. These channels should be disjoint wrt to the existing data in this image (this is not checked).
**kwargs – See
CocoImage.add_auxiliary_item()
for more details
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset() >>> gid = dset.add_image(name='my_image_name', width=200, height=200) >>> dset.add_auxiliary_item(gid, 'path/fake_B0.tif', channels='B0', >>> width=200, height=200, >>> warp_aux_to_img={'scale': 1.0})
- add_annotation(image_id, category_id=None, bbox=NoParam, segmentation=NoParam, keypoints=NoParam, id=None, **kw)[source]¶
Register a new annotation with the dataset
- Parameters
image_id (int) – image_id the annoatation is added to.
category_id (int | None) – category_id for the new annotaiton
bbox (list | kwimage.Boxes) – bounding box in xywh format
segmentation (Dict | List | Any) – keypoints in some accepted format, see
kwimage.Mask.to_coco()
andkwimage.MultiPolygon.to_coco()
. Extended types: MaskLike | MultiPolygonLike.keypoints (Any) – keypoints in some accepted format, see
kwimage.Keypoints.to_coco()
. Extended types: KeypointsLike.id (None | int) – Force using this annotation id. Typically you should NOT specify this. A new unused id will be chosen and returned.
**kw – stores arbitrary key/value pairs in this new image, Common respected key/values include but are not limited to the following: track_id (int | str): some value used to associate annotations that belong to the same “track”. score : float prob : List[float] weight (float): a weight, usually used to indicate if a ground truth annotation is difficult / important. This generalizes standard “is_hard” or “ignore” attributes in other formats. caption (str): a text caption for this annotation
- Returns
the annotation id assigned to the new annotation
- Return type
- SeeAlso:
kwcoco.coco_dataset.MixinCocoAddRemove.add_annotation()
kwcoco.coco_dataset.MixinCocoAddRemove.add_annotations()
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> image_id = 1 >>> cid = 1 >>> bbox = [10, 10, 20, 20] >>> aid = self.add_annotation(image_id, cid, bbox) >>> assert self.anns[aid]['bbox'] == bbox
Example
>>> import kwimage >>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> new_det = kwimage.Detections.random(1, segmentations=True, keypoints=True) >>> # kwimage datastructures have methods to convert to coco recognized formats >>> new_ann_data = list(new_det.to_coco(style='new'))[0] >>> image_id = 1 >>> aid = self.add_annotation(image_id, **new_ann_data) >>> # Lookup the annotation we just added >>> ann = self.index.anns[aid] >>> print('ann = {}'.format(ub.repr2(ann, nl=-2)))
Example
>>> # Attempt to add annot without a category or bbox >>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> image_id = 1 >>> aid = self.add_annotation(image_id) >>> assert None in self.index.cid_to_aids
Example
>>> # Attempt to add annot using various styles of kwimage structures >>> import kwcoco >>> import kwimage >>> self = kwcoco.CocoDataset.demo() >>> image_id = 1 >>> #-- >>> kw = {} >>> kw['segmentation'] = kwimage.Polygon.random() >>> kw['keypoints'] = kwimage.Points.random() >>> aid = self.add_annotation(image_id, **kw) >>> ann = self.index.anns[aid] >>> print('ann = {}'.format(ub.repr2(ann, nl=2))) >>> #-- >>> kw = {} >>> kw['segmentation'] = kwimage.Mask.random() >>> aid = self.add_annotation(image_id, **kw) >>> ann = self.index.anns[aid] >>> assert ann.get('segmentation', None) is not None >>> print('ann = {}'.format(ub.repr2(ann, nl=2))) >>> #-- >>> kw = {} >>> kw['segmentation'] = kwimage.Mask.random().to_array_rle() >>> aid = self.add_annotation(image_id, **kw) >>> ann = self.index.anns[aid] >>> assert ann.get('segmentation', None) is not None >>> print('ann = {}'.format(ub.repr2(ann, nl=2))) >>> #-- >>> kw = {} >>> kw['segmentation'] = kwimage.Polygon.random().to_coco() >>> kw['keypoints'] = kwimage.Points.random().to_coco() >>> aid = self.add_annotation(image_id, **kw) >>> ann = self.index.anns[aid] >>> assert ann.get('segmentation', None) is not None >>> assert ann.get('keypoints', None) is not None >>> print('ann = {}'.format(ub.repr2(ann, nl=2)))
- add_category(name, supercategory=None, id=None, **kw)[source]¶
Register a new category with the dataset
- Parameters
name (str) – name of the new category
supercategory (str | None) – parent of this category
id (int | None) – use this category id, if it was not taken
**kw – stores arbitrary key/value pairs in this new image
- Returns
the category id assigned to the new category
- Return type
- SeeAlso:
kwcoco.coco_dataset.MixinCocoAddRemove.add_category()
kwcoco.coco_dataset.MixinCocoAddRemove.ensure_category()
Example
>>> self = CocoDataset.demo() >>> prev_n_cats = self.n_cats >>> cid = self.add_category('dog', supercategory='object') >>> assert self.cats[cid]['name'] == 'dog' >>> assert self.n_cats == prev_n_cats + 1 >>> import pytest >>> with pytest.raises(ValueError): >>> self.add_category('dog', supercategory='object')
- ensure_image(file_name, id=None, **kw)[source]¶
Register an image if it is new or returns an existing id.
Like
kwcoco.coco_dataset.MixinCocoAddRemove.add_image()
, but returns the existing image id if it already exists instead of failing. In this case all metadata is ignored.- Parameters
file_name (str) – relative or absolute path to image
id (None | int) – ADVANCED. Force using this image id.
**kw – stores arbitrary key/value pairs in this new image
- Returns
the existing or new image id
- Return type
- ensure_category(name, supercategory=None, id=None, **kw)[source]¶
Register a category if it is new or returns an existing id.
Like
kwcoco.coco_dataset.MixinCocoAddRemove.add_category()
, but returns the existing category id if it already exists instead of failing. In this case all metadata is ignored.- Returns
the existing or new category id
- Return type
- add_annotations(anns)[source]¶
Faster less-safe multi-item alternative to add_annotation.
We assume the annotations are well formatted in kwcoco compliant dictionaries, including the “id” field. No validation checks are made when calling this function.
- Parameters
anns (List[Dict]) – list of annotation dictionaries
- SeeAlso:
Example
>>> self = CocoDataset.demo() >>> anns = [self.anns[aid] for aid in [2, 3, 5, 7]] >>> self.remove_annotations(anns) >>> assert self.n_annots == 7 and self._check_index() >>> self.add_annotations(anns) >>> assert self.n_annots == 11 and self._check_index()
- add_images(imgs)[source]¶
Faster less-safe multi-item alternative
We assume the images are well formatted in kwcoco compliant dictionaries, including the “id” field. No validation checks are made when calling this function.
Note
THIS FUNCTION WAS DESIGNED FOR SPEED, AS SUCH IT DOES NOT CHECK IF THE IMAGE-IDs or FILE_NAMES ARE DUPLICATED AND WILL BLINDLY ADD DATA EVEN IF IT IS BAD. THE SINGLE IMAGE VERSION IS SLOWER BUT SAFER.
- Parameters
imgs (List[Dict]) – list of image dictionaries
- SeeAlso:
kwcoco.coco_dataset.MixinCocoAddRemove.add_image()
kwcoco.coco_dataset.MixinCocoAddRemove.add_images()
kwcoco.coco_dataset.MixinCocoAddRemove.ensure_image()
Example
>>> imgs = CocoDataset.demo().dataset['images'] >>> self = CocoDataset() >>> self.add_images(imgs) >>> assert self.n_images == 3 and self._check_index()
- clear_images()[source]¶
Removes all images and annotations (but not categories)
Example
>>> self = CocoDataset.demo() >>> self.clear_images() >>> print(ub.repr2(self.basic_stats(), nobr=1, nl=0, si=1)) n_anns: 0, n_imgs: 0, n_videos: 0, n_cats: 8
- clear_annotations()[source]¶
Removes all annotations (but not images and categories)
Example
>>> self = CocoDataset.demo() >>> self.clear_annotations() >>> print(ub.repr2(self.basic_stats(), nobr=1, nl=0, si=1)) n_anns: 0, n_imgs: 3, n_videos: 0, n_cats: 8
- remove_annotation(aid_or_ann)[source]¶
Remove a single annotation from the dataset
If you have multiple annotations to remove its more efficient to remove them in batch with
kwcoco.coco_dataset.MixinCocoAddRemove.remove_annotations()
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> aids_or_anns = [self.anns[2], 3, 4, self.anns[1]] >>> self.remove_annotations(aids_or_anns) >>> assert len(self.dataset['annotations']) == 7 >>> self._check_index()
- remove_annotations(aids_or_anns, verbose=0, safe=True)[source]¶
Remove multiple annotations from the dataset.
- Parameters
anns_or_aids (List) – list of annotation dicts or ids
safe (bool, default=True) – if True, we perform checks to remove duplicates and non-existing identifiers.
- Returns
num_removed: information on the number of items removed
- Return type
Dict
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> prev_n_annots = self.n_annots >>> aids_or_anns = [self.anns[2], 3, 4, self.anns[1]] >>> self.remove_annotations(aids_or_anns) # xdoc: +IGNORE_WANT {'annotations': 4} >>> assert len(self.dataset['annotations']) == prev_n_annots - 4 >>> self._check_index()
- remove_categories(cat_identifiers, keep_annots=False, verbose=0, safe=True)[source]¶
Remove categories and all annotations in those categories.
Currently does not change any hierarchy information
- Parameters
cat_identifiers (List) – list of category dicts, names, or ids
keep_annots (bool, default=False) – if True, keeps annotations, but removes category labels.
safe (bool, default=True) – if True, we perform checks to remove duplicates and non-existing identifiers.
- Returns
num_removed: information on the number of items removed
- Return type
Dict
Example
>>> self = CocoDataset.demo() >>> cat_identifiers = [self.cats[1], 'rocket', 3] >>> self.remove_categories(cat_identifiers) >>> assert len(self.dataset['categories']) == 5 >>> self._check_index()
- remove_images(gids_or_imgs, verbose=0, safe=True)[source]¶
Remove images and any annotations contained by them
- Parameters
gids_or_imgs (List) – list of image dicts, names, or ids
safe (bool, default=True) – if True, we perform checks to remove duplicates and non-existing identifiers.
- Returns
num_removed: information on the number of items removed
- Return type
Dict
Example
>>> from kwcoco.coco_dataset import * >>> self = CocoDataset.demo() >>> assert len(self.dataset['images']) == 3 >>> gids_or_imgs = [self.imgs[2], 'astro.png'] >>> self.remove_images(gids_or_imgs) # xdoc: +IGNORE_WANT {'annotations': 11, 'images': 2} >>> assert len(self.dataset['images']) == 1 >>> self._check_index() >>> gids_or_imgs = [3] >>> self.remove_images(gids_or_imgs) >>> assert len(self.dataset['images']) == 0 >>> self._check_index()
- remove_videos(vidids_or_videos, verbose=0, safe=True)[source]¶
Remove videos and any images / annotations contained by them
- Parameters
vidids_or_videos (List) – list of video dicts, names, or ids
safe (bool, default=True) – if True, we perform checks to remove duplicates and non-existing identifiers.
- Returns
num_removed: information on the number of items removed
- Return type
Dict
Example
>>> from kwcoco.coco_dataset import * >>> self = CocoDataset.demo('vidshapes8') >>> assert len(self.dataset['videos']) == 8 >>> vidids_or_videos = [self.dataset['videos'][0]['id']] >>> self.remove_videos(vidids_or_videos) # xdoc: +IGNORE_WANT {'annotations': 4, 'images': 2, 'videos': 1} >>> assert len(self.dataset['videos']) == 7 >>> self._check_index()
- remove_annotation_keypoints(kp_identifiers)[source]¶
Removes all keypoints with a particular category
- Parameters
kp_identifiers (List) – list of keypoint category dicts, names, or ids
- Returns
num_removed: information on the number of items removed
- Return type
Dict
- remove_keypoint_categories(kp_identifiers)[source]¶
Removes all keypoints of a particular category as well as all annotation keypoints with those ids.
- Parameters
kp_identifiers (List) – list of keypoint category dicts, names, or ids
- Returns
num_removed: information on the number of items removed
- Return type
Dict
Example
>>> self = CocoDataset.demo('shapes', rng=0) >>> kp_identifiers = ['left_eye', 'mid_tip'] >>> remove_info = self.remove_keypoint_categories(kp_identifiers) >>> print('remove_info = {!r}'.format(remove_info)) >>> # FIXME: for whatever reason demodata generation is not determenistic when seeded >>> # assert remove_info == {'keypoint_categories': 2, 'annotation_keypoints': 16, 'reflection_ids': 1} >>> assert self._resolve_to_kpcat('right_eye')['reflection_id'] is None
- set_annotation_category(aid_or_ann, cid_or_cat)[source]¶
Sets the category of a single annotation
- Parameters
aid_or_ann (dict | int) – annotation dict or id
cid_or_cat (dict | int) – category dict or id
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> old_freq = self.category_annotation_frequency() >>> aid_or_ann = aid = 2 >>> cid_or_cat = new_cid = self.ensure_category('kitten') >>> self.set_annotation_category(aid, new_cid) >>> new_freq = self.category_annotation_frequency() >>> print('new_freq = {}'.format(ub.repr2(new_freq, nl=1))) >>> print('old_freq = {}'.format(ub.repr2(old_freq, nl=1))) >>> assert sum(new_freq.values()) == sum(old_freq.values()) >>> assert new_freq['kitten'] == 1
- class kwcoco.coco_dataset.CocoIndex[source]¶
Bases:
object
Fast lookup index for the COCO dataset with dynamic modification
- Variables
imgs (Dict[int, dict]) – mapping between image ids and the image dictionaries
anns (Dict[int, dict]) – mapping between annotation ids and the annotation dictionaries
cats (Dict[int, dict]) – mapping between category ids and the category dictionaries
kpcats (Dict[int, dict]) – mapping between keypoint category ids and keypoint category dictionaries
gid_to_aids (Dict[int, List[int]]) – mapping between an image-id and annotation-ids that belong to it
cid_to_aids (Dict[int, List[int]]) – mapping between an category-id and annotation-ids that belong to it
cid_to_gids (Dict[int, List[int]]) – mapping between an category-id and image-ids that contain at least one annotation with this cateogry id.
trackid_to_aids (Dict[int, List[int]]) – mapping between a track-id and annotation-ids that belong to it
vidid_to_gids (Dict[int, List[int]]) – mapping between an video-id and images-ids that belong to it
name_to_video (Dict[str, dict]) – mapping between a video name and the video dictionary.
name_to_cat (Dict[str, dict]) – mapping between a category name and the category dictionary.
name_to_img (Dict[str, dict]) – mapping between a image name and the image dictionary.
file_name_to_img (Dict[str, dict]) – mapping between a image file_name and the image dictionary.
- property cid_to_gids¶
Example: >>> import kwcoco >>> self = dset = kwcoco.CocoDataset() >>> self.index.cid_to_gids
- build(parent)[source]¶
Build all id-to-obj reverse indexes from scratch.
- Parameters
parent (kwcoco.CocoDataset) – the dataset to index
- Notation:
aid - Annotation ID gid - imaGe ID cid - Category ID vidid - Video ID
Example
>>> import kwcoco >>> parent = kwcoco.CocoDataset.demo('vidshapes1', num_frames=4, rng=1) >>> index = parent.index >>> index.build(parent)
- class kwcoco.coco_dataset.MixinCocoIndex[source]¶
Bases:
object
Give the dataset top level access to index attributes
- property anns¶
- property imgs¶
- property cats¶
- property gid_to_aids¶
- property cid_to_aids¶
- property name_to_cat¶
- class kwcoco.coco_dataset.CocoDataset(data=None, tag=None, bundle_dpath=None, img_root=None, fname=None, autobuild=True)[source]¶
Bases:
AbstractCocoDataset
,MixinCocoAddRemove
,MixinCocoStats
,MixinCocoObjects
,MixinCocoDraw
,MixinCocoAccessors
,MixinCocoExtras
,MixinCocoIndex
,MixinCocoDepricate
,NiceRepr
The main coco dataset class with a json dataset backend.
- Variables
dataset (Dict) – raw json data structure. This is the base dictionary that contains {‘annotations’: List, ‘images’: List, ‘categories’: List}
index (CocoIndex) – an efficient lookup index into the coco data structure. The index defines its own attributes like
anns
,cats
,imgs
,gid_to_aids
,file_name_to_img
, etc. SeeCocoIndex
for more details on which attributes are available.fpath (PathLike | None) – if known, this stores the filepath the dataset was loaded from
tag (str) – A tag indicating the name of the dataset.
bundle_dpath (PathLike | None) – If known, this is the root path that all image file names are relative to. This can also be manually overwritten by the user.
hashid (str | None) – If computed, this will be a hash uniquely identifing the dataset. To ensure this is computed see
kwcoco.coco_dataset.MixinCocoExtras._build_hashid()
.
References
http://cocodataset.org/#format http://cocodataset.org/#download
CommandLine
python -m kwcoco.coco_dataset CocoDataset --show
Example
>>> from kwcoco.coco_dataset import demo_coco_data >>> import kwcoco >>> import ubelt as ub >>> # Returns a coco json structure >>> dataset = demo_coco_data() >>> # Pass the coco json structure to the API >>> self = kwcoco.CocoDataset(dataset, tag='demo') >>> # Now you can access the data using the index and helper methods >>> # >>> # Start by looking up an image by it's COCO id. >>> image_id = 1 >>> img = self.index.imgs[image_id] >>> print(ub.repr2(img, nl=1, sort=1)) { 'file_name': 'astro.png', 'id': 1, 'url': 'https://i.imgur.com/KXhKM72.png', } >>> # >>> # Use the (gid_to_aids) index to lookup annotations in the iamge >>> annotation_id = sorted(self.index.gid_to_aids[image_id])[0] >>> ann = self.index.anns[annotation_id] >>> print(ub.repr2(ub.dict_diff(ann, {'segmentation'}), nl=1)) { 'bbox': [10, 10, 360, 490], 'category_id': 1, 'id': 1, 'image_id': 1, 'keypoints': [247, 101, 2, 202, 100, 2], } >>> # >>> # Use annotation category id to look up that information >>> category_id = ann['category_id'] >>> cat = self.index.cats[category_id] >>> print('cat = {}'.format(ub.repr2(cat, nl=1, sort=1))) cat = { 'id': 1, 'name': 'astronaut', 'supercategory': 'human', } >>> # >>> # Now play with some helper functions, like extended statistics >>> extended_stats = self.extended_stats() >>> # xdoctest: +IGNORE_WANT >>> print('extended_stats = {}'.format(ub.repr2(extended_stats, nl=1, precision=2, sort=1))) extended_stats = { 'annots_per_img': {'mean': 3.67, 'std': 3.86, 'min': 0.00, 'max': 9.00, 'nMin': 1, 'nMax': 1, 'shape': (3,)}, 'imgs_per_cat': {'mean': 0.88, 'std': 0.60, 'min': 0.00, 'max': 2.00, 'nMin': 2, 'nMax': 1, 'shape': (8,)}, 'cats_per_img': {'mean': 2.33, 'std': 2.05, 'min': 0.00, 'max': 5.00, 'nMin': 1, 'nMax': 1, 'shape': (3,)}, 'annots_per_cat': {'mean': 1.38, 'std': 1.49, 'min': 0.00, 'max': 5.00, 'nMin': 2, 'nMax': 1, 'shape': (8,)}, 'imgs_per_video': {'empty_list': True}, } >>> # You can "draw" a raster of the annotated image with cv2 >>> canvas = self.draw_image(2) >>> # Or if you have matplotlib you can "show" the image with mpl objects >>> # xdoctest: +REQUIRES(--show) >>> from matplotlib import pyplot as plt >>> fig = plt.figure() >>> ax1 = fig.add_subplot(1, 2, 1) >>> self.show_image(gid=2) >>> ax2 = fig.add_subplot(1, 2, 2) >>> ax2.imshow(canvas) >>> ax1.set_title('show with matplotlib') >>> ax2.set_title('draw with cv2') >>> plt.show()
- property fpath¶
In the future we will deprecate img_root for bundle_dpath
- classmethod from_data(data, bundle_dpath=None, img_root=None)[source]¶
Constructor from a json dictionary
- classmethod from_image_paths(gpaths, bundle_dpath=None, img_root=None)[source]¶
Constructor from a list of images paths.
This is a convinience method.
- Parameters
gpaths (List[str]) – list of image paths
Example
>>> coco_dset = CocoDataset.from_image_paths(['a.png', 'b.png']) >>> assert coco_dset.n_images == 2
- classmethod from_coco_paths(fpaths, max_workers=0, verbose=1, mode='thread', union='try')[source]¶
Constructor from multiple coco file paths.
Loads multiple coco datasets and unions the result
Note
if the union operation fails, the list of individually loaded files is returned instead.
- Parameters
fpaths (List[str]) – list of paths to multiple coco files to be loaded and unioned.
max_workers (int, default=0) – number of worker threads / processes
verbose (int) – verbosity level
mode (str) – thread, process, or serial
union (str | bool, default=’try’) – If True, unions the result datasets after loading. If False, just returns the result list. If ‘try’, then try to preform the union, but return the result list if it fails.
- copy()[source]¶
Deep copies this object
Example
>>> from kwcoco.coco_dataset import * >>> self = CocoDataset.demo() >>> new = self.copy() >>> assert new.imgs[1] is new.dataset['images'][0] >>> assert new.imgs[1] == self.dataset['images'][0] >>> assert new.imgs[1] is not self.dataset['images'][0]
- dumps(indent=None, newlines=False)[source]¶
Writes the dataset out to the json format
- Parameters
newlines (bool) – if True, each annotation, image, category gets its own line
Note
- Using newlines=True is similar to:
print(ub.repr2(dset.dataset, nl=2, trailsep=False)) However, the above may not output valid json if it contains ndarrays.
Example
>>> from kwcoco.coco_dataset import * >>> self = CocoDataset.demo() >>> text = self.dumps(newlines=True) >>> print(text) >>> self2 = CocoDataset(json.loads(text), tag='demo2') >>> assert self2.dataset == self.dataset >>> assert self2.dataset is not self.dataset
>>> text = self.dumps(newlines=True) >>> print(text) >>> self2 = CocoDataset(json.loads(text), tag='demo2') >>> assert self2.dataset == self.dataset >>> assert self2.dataset is not self.dataset
Example
>>> from kwcoco.coco_dataset import * >>> self = CocoDataset.coerce('vidshapes1-msi-multisensor', verbose=3) >>> self.remove_annotations(self.annots()) >>> text = self.dumps(newlines=True, indent=' ') >>> print(text)
- dump(file, indent=None, newlines=False, temp_file=True)[source]¶
Writes the dataset out to the json format
- Parameters
file (PathLike | IO) – Where to write the data. Can either be a path to a file or an open file pointer / stream.
newlines (bool) – if True, each annotation, image, category gets its own line.
temp_file (bool | str, default=True) – Argument to
safer.open()
. Ignored iffile
is not a PathLike object.
Example
>>> import tempfile >>> from kwcoco.coco_dataset import * >>> self = CocoDataset.demo() >>> file = tempfile.NamedTemporaryFile('w') >>> self.dump(file) >>> file.seek(0) >>> text = open(file.name, 'r').read() >>> print(text) >>> file.seek(0) >>> dataset = json.load(open(file.name, 'r')) >>> self2 = CocoDataset(dataset, tag='demo2') >>> assert self2.dataset == self.dataset >>> assert self2.dataset is not self.dataset
>>> file = tempfile.NamedTemporaryFile('w') >>> self.dump(file, newlines=True) >>> file.seek(0) >>> text = open(file.name, 'r').read() >>> print(text) >>> file.seek(0) >>> dataset = json.load(open(file.name, 'r')) >>> self2 = CocoDataset(dataset, tag='demo2') >>> assert self2.dataset == self.dataset >>> assert self2.dataset is not self.dataset
- union(*, disjoint_tracks=True, **kwargs)[source]¶
Merges multiple
CocoDataset
items into one. Names and associations are retained, but ids may be different.- Parameters
*others – a series of CocoDatasets that we will merge. Note, if called as an instance method, the “self” instance will be the first item in the “others” list. But if called like a classmethod, “others” will be empty by default.
disjoint_tracks (bool, default=True) – if True, we will assume track-ids are disjoint and if two datasets share the same track-id, we will disambiguate them. Otherwise they will be copied over as-is.
**kwargs – constructor options for the new merged CocoDataset
- Returns
a new merged coco dataset
- Return type
CommandLine
xdoctest -m kwcoco.coco_dataset CocoDataset.union
Example
>>> # Test union works with different keypoint categories >>> dset1 = CocoDataset.demo('shapes1') >>> dset2 = CocoDataset.demo('shapes2') >>> dset1.remove_keypoint_categories(['bot_tip', 'mid_tip', 'right_eye']) >>> dset2.remove_keypoint_categories(['top_tip', 'left_eye']) >>> dset_12a = CocoDataset.union(dset1, dset2) >>> dset_12b = dset1.union(dset2) >>> dset_21 = dset2.union(dset1) >>> def add_hist(h1, h2): >>> return {k: h1.get(k, 0) + h2.get(k, 0) for k in set(h1) | set(h2)} >>> kpfreq1 = dset1.keypoint_annotation_frequency() >>> kpfreq2 = dset2.keypoint_annotation_frequency() >>> kpfreq_want = add_hist(kpfreq1, kpfreq2) >>> kpfreq_got1 = dset_12a.keypoint_annotation_frequency() >>> kpfreq_got2 = dset_12b.keypoint_annotation_frequency() >>> assert kpfreq_want == kpfreq_got1 >>> assert kpfreq_want == kpfreq_got2
>>> # Test disjoint gid datasets >>> import kwcoco >>> dset1 = kwcoco.CocoDataset.demo('shapes3') >>> for new_gid, img in enumerate(dset1.dataset['images'], start=10): >>> for aid in dset1.gid_to_aids[img['id']]: >>> dset1.anns[aid]['image_id'] = new_gid >>> img['id'] = new_gid >>> dset1.index.clear() >>> dset1._build_index() >>> # ------ >>> dset2 = kwcoco.CocoDataset.demo('shapes2') >>> for new_gid, img in enumerate(dset2.dataset['images'], start=100): >>> for aid in dset2.gid_to_aids[img['id']]: >>> dset2.anns[aid]['image_id'] = new_gid >>> img['id'] = new_gid >>> dset1.index.clear() >>> dset2._build_index() >>> others = [dset1, dset2] >>> merged = kwcoco.CocoDataset.union(*others) >>> print('merged = {!r}'.format(merged)) >>> print('merged.imgs = {}'.format(ub.repr2(merged.imgs, nl=1))) >>> assert set(merged.imgs) & set([10, 11, 12, 100, 101]) == set(merged.imgs)
>>> # Test data is not preserved >>> dset2 = kwcoco.CocoDataset.demo('shapes2') >>> dset1 = kwcoco.CocoDataset.demo('shapes3') >>> others = (dset1, dset2) >>> cls = self = kwcoco.CocoDataset >>> merged = cls.union(*others) >>> print('merged = {!r}'.format(merged)) >>> print('merged.imgs = {}'.format(ub.repr2(merged.imgs, nl=1))) >>> assert set(merged.imgs) & set([1, 2, 3, 4, 5]) == set(merged.imgs)
>>> # Test track-ids are mapped correctly >>> dset1 = kwcoco.CocoDataset.demo('vidshapes1') >>> dset2 = kwcoco.CocoDataset.demo('vidshapes2') >>> dset3 = kwcoco.CocoDataset.demo('vidshapes3') >>> others = (dset1, dset2, dset3) >>> for dset in others: >>> [a.pop('segmentation', None) for a in dset.index.anns.values()] >>> [a.pop('keypoints', None) for a in dset.index.anns.values()] >>> cls = self = kwcoco.CocoDataset >>> merged = cls.union(*others, disjoint_tracks=1) >>> print('dset1.anns = {}'.format(ub.repr2(dset1.anns, nl=1))) >>> print('dset2.anns = {}'.format(ub.repr2(dset2.anns, nl=1))) >>> print('dset3.anns = {}'.format(ub.repr2(dset3.anns, nl=1))) >>> print('merged.anns = {}'.format(ub.repr2(merged.anns, nl=1)))
Example
>>> import kwcoco >>> # Test empty union >>> empty_union = kwcoco.CocoDataset.union() >>> assert len(empty_union.index.imgs) == 0
Todo
[ ] are supercategories broken?
[ ] reuse image ids where possible
[ ] reuse annotation / category ids where possible
[X] handle case where no inputs are given
[x] disambiguate track-ids
[x] disambiguate video-ids
- subset(gids, copy=False, autobuild=True)[source]¶
Return a subset of the larger coco dataset by specifying which images to port. All annotations in those images will be taken.
- Parameters
gids (List[int]) – image-ids to copy into a new dataset
copy (bool, default=False) – if True, makes a deep copy of all nested attributes, otherwise makes a shallow copy.
autobuild (bool, default=True) – if True will automatically build the fast lookup index.
Example
>>> self = CocoDataset.demo() >>> gids = [1, 3] >>> sub_dset = self.subset(gids) >>> assert len(self.index.gid_to_aids) == 3 >>> assert len(sub_dset.gid_to_aids) == 2
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('vidshapes2') >>> gids = [1, 2] >>> sub_dset = self.subset(gids, copy=True) >>> assert len(sub_dset.index.videos) == 1 >>> assert len(self.index.videos) == 2
Example
>>> self = CocoDataset.demo() >>> sub1 = self.subset([1]) >>> sub2 = self.subset([2]) >>> sub3 = self.subset([3]) >>> others = [sub1, sub2, sub3] >>> rejoined = CocoDataset.union(*others) >>> assert len(sub1.anns) == 9 >>> assert len(sub2.anns) == 2 >>> assert len(sub3.anns) == 0 >>> assert rejoined.basic_stats() == self.basic_stats()
- view_sql(force_rewrite=False, memory=False)[source]¶
Create a cached SQL interface to this dataset suitable for large scale multiprocessing use cases.
- Parameters
force_rewrite (bool, default=False) – if True, forces an update to any existing cache file on disk
memory (bool, default=False) – if True, the database is constructed in memory.
Note
This view cache is experimental and currently depends on the timestamp of the file pointed to by
self.fpath
. In other words dont use this on in-memory datasets.
- kwcoco.coco_dataset.demo_coco_data()[source]¶
Simple data for testing.
This contains several non-standard fields, which help ensure robustness of functions tested with this data. For more compliant demodata see the
kwcoco.demodata
submoduleExample
>>> # xdoctest: +REQUIRES(--show) >>> from kwcoco.coco_dataset import demo_coco_data, CocoDataset >>> dataset = demo_coco_data() >>> self = CocoDataset(dataset, tag='demo') >>> import kwplot >>> kwplot.autompl() >>> self.show_image(gid=1) >>> kwplot.show_if_requested()
kwcoco.coco_evaluator module¶
kwcoco.coco_image module¶
- class kwcoco.coco_image.CocoImage(img, dset=None)[source]¶
Bases:
NiceRepr
An object-oriented representation of a coco image.
It provides helper methods that are specific to a single image.
This operates directly on a single coco image dictionary, but it can optionally be connected to a parent dataset, which allows it to use CocoDataset methods to query about relationships and resolve pointers.
This is different than the Images class in coco_object1d, which is just a vectorized interface to multiple objects.
Example
>>> import kwcoco >>> dset1 = kwcoco.CocoDataset.demo('shapes8') >>> dset2 = kwcoco.CocoDataset.demo('vidshapes8-multispectral')
>>> self = CocoImage(dset1.imgs[1], dset1) >>> print('self = {!r}'.format(self)) >>> print('self.channels = {}'.format(ub.repr2(self.channels, nl=1)))
>>> self = CocoImage(dset2.imgs[1], dset2) >>> print('self.channels = {}'.format(ub.repr2(self.channels, nl=1))) >>> self.primary_asset()
- property bundle_dpath¶
- property video¶
Helper to grab the video for this image if it exists
- detach()[source]¶
Removes references to the underlying coco dataset, but keeps special information such that it wont be needed.
- get(key, default=NoParam)[source]¶
Proxy getter attribute for underlying self.img dictionary
Example
>>> import pytest >>> # without extra populated >>> import kwcoco >>> self = kwcoco.CocoImage({'foo': 1}) >>> assert self.get('foo') == 1 >>> assert self.get('foo', None) == 1 >>> # with extra populated >>> self = kwcoco.CocoImage({'extra': {'foo': 1}}) >>> assert self.get('foo') == 1 >>> assert self.get('foo', None) == 1 >>> # without extra empty >>> self = kwcoco.CocoImage({}) >>> with pytest.raises(KeyError): >>> self.get('foo') >>> assert self.get('foo', None) is None >>> # with extra empty >>> self = kwcoco.CocoImage({'extra': {'bar': 1}}) >>> with pytest.raises(KeyError): >>> self.get('foo') >>> assert self.get('foo', None) is None
- property channels¶
- property num_channels¶
- property dsize¶
- primary_asset(requires=None)[source]¶
Compute a “main” image asset.
Notes
Uses a heuristic.
First, try to find the auxiliary image that has with the smallest
distortion to the base image (if known via warp_aux_to_img)
Second, break ties by using the largest image if w / h is known
Last, if previous information not available use the first auxiliary image.
- Parameters
requires (List[str]) – list of attribute that must be non-None to consider an object as the primary one.
Todo
[ ] Add in primary heuristics
Example
>>> import kwarray >>> from kwcoco.coco_image import * # NOQA >>> rng = kwarray.ensure_rng(0) >>> def random_auxiliary(name, w=None, h=None): >>> return {'file_name': name, 'width': w, 'height': h} >>> self = CocoImage({ >>> 'auxiliary': [ >>> random_auxiliary('1'), >>> random_auxiliary('2'), >>> random_auxiliary('3'), >>> ] >>> }) >>> assert self.primary_asset()['file_name'] == '1' >>> self = CocoImage({ >>> 'auxiliary': [ >>> random_auxiliary('1'), >>> random_auxiliary('2', 3, 3), >>> random_auxiliary('3'), >>> ] >>> }) >>> assert self.primary_asset()['file_name'] == '2'
- iter_image_filepaths(with_bundle=True)[source]¶
Could rename to iter_asset_filepaths
- Parameters
with_bundle (bool) – If True, prepends the bundle dpath to fully specify the path. Otherwise, just returns the registered string in the file_name attribute of each asset. Defaults to True.
- iter_asset_objs()[source]¶
Iterate through base + auxiliary dicts that have file paths
- Yields
dict – an image or auxiliary dictionary
- find_asset_obj(channels)[source]¶
Find the asset dictionary with the specified channels
Example
>>> import kwcoco >>> coco_img = kwcoco.CocoImage({'width': 128, 'height': 128}) >>> coco_img.add_auxiliary_item( >>> 'rgb.png', channels='red|green|blue', width=32, height=32) >>> assert coco_img.find_asset_obj('red') is not None >>> assert coco_img.find_asset_obj('green') is not None >>> assert coco_img.find_asset_obj('blue') is not None >>> assert coco_img.find_asset_obj('red|blue') is not None >>> assert coco_img.find_asset_obj('red|green|blue') is not None >>> assert coco_img.find_asset_obj('red|green|blue') is not None >>> assert coco_img.find_asset_obj('black') is None >>> assert coco_img.find_asset_obj('r') is None
Example
>>> # Test with concise channel code >>> import kwcoco >>> coco_img = kwcoco.CocoImage({'width': 128, 'height': 128}) >>> coco_img.add_auxiliary_item( >>> 'msi.png', channels='foo.0:128', width=32, height=32) >>> assert coco_img.find_asset_obj('foo') is None >>> assert coco_img.find_asset_obj('foo.3') is not None >>> assert coco_img.find_asset_obj('foo.3:5') is not None >>> assert coco_img.find_asset_obj('foo.3000') is None
- add_auxiliary_item(file_name=None, channels=None, imdata=None, warp_aux_to_img=None, width=None, height=None, imwrite=False)[source]¶
Adds an auxiliary / asset item to the image dictionary.
This operation can be done purely in-memory (the default), or the image data can be written to a file on disk (via the imwrite=True flag).
- Parameters
file_name (str | None) – The name of the file relative to the bundle directory. If unspecified, imdata must be given.
channels (str | kwcoco.FusedChannelSpec) – The channel code indicating what each of the bands represents. These channels should be disjoint wrt to the existing data in this image (this is not checked).
imdata (ndarray | None) – The underlying image data this auxiliary item represents. If unspecified, it is assumed file_name points to a path on disk that will eventually exist. If imdata, file_name, and the special imwrite=True flag are specified, this function will write the data to disk.
warp_aux_to_img (kwimage.Affine) – The transformation from this auxiliary space to image space. If unspecified, assumes this item is related to image space by only a scale factor.
width (int) – Width of the data in auxiliary space (inferred if unspecified)
height (int) – Height of the data in auxiliary space (inferred if unspecified)
imwrite (bool) – If specified, both imdata and file_name must be specified, and this will write the data to disk. Note: it it recommended that you simply call imwrite yourself before or after calling this function. This lets you better control imwrite parameters.
Todo
[ ] Allow imwrite to specify an executor that is used to
return a Future so the imwrite call does not block.
Example
>>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> coco_img = dset.coco_image(1) >>> imdata = np.random.rand(32, 32, 5) >>> channels = kwcoco.FusedChannelSpec.coerce('Aux:5') >>> coco_img.add_auxiliary_item(imdata=imdata, channels=channels)
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset() >>> gid = dset.add_image(name='my_image_name', width=200, height=200) >>> coco_img = dset.coco_image(gid) >>> coco_img.add_auxiliary_item('path/img1_B0.tif', channels='B0', width=200, height=200) >>> coco_img.add_auxiliary_item('path/img1_B1.tif', channels='B1', width=200, height=200) >>> coco_img.add_auxiliary_item('path/img1_B2.tif', channels='B2', width=200, height=200) >>> coco_img.add_auxiliary_item('path/img1_TCI.tif', channels='r|g|b', width=200, height=200)
- add_asset(file_name=None, channels=None, imdata=None, warp_aux_to_img=None, width=None, height=None, imwrite=False)¶
Adds an auxiliary / asset item to the image dictionary.
This operation can be done purely in-memory (the default), or the image data can be written to a file on disk (via the imwrite=True flag).
- Parameters
file_name (str | None) – The name of the file relative to the bundle directory. If unspecified, imdata must be given.
channels (str | kwcoco.FusedChannelSpec) – The channel code indicating what each of the bands represents. These channels should be disjoint wrt to the existing data in this image (this is not checked).
imdata (ndarray | None) – The underlying image data this auxiliary item represents. If unspecified, it is assumed file_name points to a path on disk that will eventually exist. If imdata, file_name, and the special imwrite=True flag are specified, this function will write the data to disk.
warp_aux_to_img (kwimage.Affine) – The transformation from this auxiliary space to image space. If unspecified, assumes this item is related to image space by only a scale factor.
width (int) – Width of the data in auxiliary space (inferred if unspecified)
height (int) – Height of the data in auxiliary space (inferred if unspecified)
imwrite (bool) – If specified, both imdata and file_name must be specified, and this will write the data to disk. Note: it it recommended that you simply call imwrite yourself before or after calling this function. This lets you better control imwrite parameters.
Todo
[ ] Allow imwrite to specify an executor that is used to
return a Future so the imwrite call does not block.
Example
>>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> coco_img = dset.coco_image(1) >>> imdata = np.random.rand(32, 32, 5) >>> channels = kwcoco.FusedChannelSpec.coerce('Aux:5') >>> coco_img.add_auxiliary_item(imdata=imdata, channels=channels)
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset() >>> gid = dset.add_image(name='my_image_name', width=200, height=200) >>> coco_img = dset.coco_image(gid) >>> coco_img.add_auxiliary_item('path/img1_B0.tif', channels='B0', width=200, height=200) >>> coco_img.add_auxiliary_item('path/img1_B1.tif', channels='B1', width=200, height=200) >>> coco_img.add_auxiliary_item('path/img1_B2.tif', channels='B2', width=200, height=200) >>> coco_img.add_auxiliary_item('path/img1_TCI.tif', channels='r|g|b', width=200, height=200)
- delay(channels=None, space='image', bundle_dpath=None, interpolation='linear', antialias=True, nodata_method=None, jagged=False, mode=1)[source]¶
Perform a delayed load on the data in this image.
The delayed load can load a subset of channels, and perform lazy warping operations. If the underlying data is in a tiled format this can reduce the amount of disk IO needed to read the data if only a small crop or lower resolution view of the data is needed.
- Note:
This method is experimental and relies on the delayed load proof-of-concept.
- Args:
gid (int): image id to load
- channels (kwcoco.FusedChannelSpec): specific channels to load.
if unspecified, all channels are loaded.
- space (str):
can either be “image” for loading in image space, or “video” for loading in video space.
- jagged (bool):
if True, then does not concatenate the channels and instead returns a delayed jagged concatenate.
- TODO:
- [X] Currently can only take all or none of the channels from each
base-image / auxiliary dict. For instance if the main image is r|g|b you can’t just select g|b at the moment.
- [X] The order of the channels in the delayed load should
match the requested channel order.
- wc
[X] TODO: add nans to bands that don’t exist or throw an error
- [ ] This function could stand to have a better name. Maybe imread
with a delayed=True flag? Or maybe just delayed_load?
- Example:
>>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> gid = 1 >>> # >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> self = CocoImage(dset.imgs[gid], dset) >>> delayed = self.delay() >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> # >>> dset = kwcoco.CocoDataset.demo('shapes8') >>> delayed = dset.coco_image(gid).delay() >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize()))
>>> crop = delayed.crop((slice(0, 3), slice(0, 3))) >>> crop.finalize()
>>> # TODO: should only select the "red" channel >>> dset = kwcoco.CocoDataset.demo('shapes8') >>> delayed = CocoImage(dset.imgs[gid], dset).delay(channels='r')
>>> import kwcoco >>> gid = 1 >>> # >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> delayed = dset.coco_image(gid).delay(channels='B1|B2', space='image') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> delayed = dset.coco_image(gid).delay(channels='B1|B2|B11', space='image') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> delayed = dset.coco_image(gid).delay(channels='B8|B1', space='video') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize()))
>>> delayed = dset.coco_image(gid).delay(channels='B8|foo|bar|B1', space='video') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize()))
- Example:
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> coco_img = dset.coco_image(1) >>> # Test case where nothing is registered in the dataset >>> delayed = coco_img.delay() >>> final = delayed.finalize() >>> assert final.shape == (512, 512, 3)
>>> delayed = coco_img.delay(mode=1) >>> final = delayed.finalize() >>> print('final.shape = {}'.format(ub.repr2(final.shape, nl=1))) >>> assert final.shape == (512, 512, 3)
- Example:
>>> # Test that delay works when imdata is stored in the image >>> # dictionary itself. >>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> coco_img = dset.coco_image(1) >>> imdata = np.random.rand(6, 6, 5) >>> imdata[:] = np.arange(5)[None, None, :] >>> channels = kwcoco.FusedChannelSpec.coerce('Aux:5') >>> coco_img.add_auxiliary_item(imdata=imdata, channels=channels) >>> delayed = coco_img.delay(channels='B1|Aux:2:4', mode=1) >>> final = delayed.finalize()
- Example:
>>> # Test delay when loading in asset space >>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-msi-multisensor') >>> coco_img = dset.coco_image(1) >>> stream1 = coco_img.channels.streams()[0] >>> stream2 = coco_img.channels.streams()[1] >>> aux_delayed = coco_img.delay(stream1, space='asset') >>> img_delayed = coco_img.delay(stream1, space='image') >>> vid_delayed = coco_img.delay(stream1, space='video') >>> # >>> aux_imdata = aux_delayed.as_xarray().finalize() >>> img_imdata = img_delayed.as_xarray().finalize() >>> assert aux_imdata.shape != img_imdata.shape >>> # Cannot load multiple asset items at the same time in >>> # asset space >>> import pytest >>> fused_channels = stream1 | stream2 >>> with pytest.raises(kwcoco.exceptions.CoordinateCompatibilityError): >>> aux_delayed2 = coco_img.delay(fused_channels, space='asset') >>> # But we can if we allow jagged-ness >>> aux_delayed3 = coco_img.delay(fused_channels, space='asset', jagged=True) >>> aux_delayed3.finalize()
- valid_region¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- property warp_vid_from_img¶
- property warp_img_from_vid¶
- class kwcoco.coco_image.CocoAsset[source]¶
Bases:
object
A Coco Asset / Auxiliary Item
Represents one 2D image file relative to a parent img.
Could be a single asset, or an image with sub-assets, but sub-assets are ignored here.
Initially we called these “auxiliary” items, but I think we should change their name to “assets”, which better maps with STAC terminology.
kwcoco.coco_objects1d module¶
Vectorized ORM-like objects used in conjunction with coco_dataset
- class kwcoco.coco_objects1d.ObjectList1D(ids, dset, key)[source]¶
Bases:
NiceRepr
Vectorized access to lists of dictionary objects
Lightweight reference to a set of object (e.g. annotations, images) that allows for convenient property access.
- Parameters
ids (List[int]) – list of ids
dset (CocoDataset) – parent dataset
key (str) – main object name (e.g. ‘images’, ‘annotations’)
- Types:
ObjT = Ann | Img | Cat # can be one of these types ObjectList1D gives us access to a List[ObjT]
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> # Both annots and images are object lists >>> self = dset.annots() >>> self = dset.images() >>> # can call with a list of ids or not, for everything >>> self = dset.annots([1, 2, 11]) >>> self = dset.images([1, 2, 3]) >>> self.lookup('id') >>> self.lookup(['id'])
- property objs¶
Get the underlying object dictionary for each object.
- Returns
all object dictionaries
- Return type
List[ObjT]
- take(idxs)[source]¶
Take a subset by index
- Returns
ObjectList1D
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo().annots() >>> assert len(self.take([0, 2, 3])) == 3
- compress(flags)[source]¶
Take a subset by flags
- Returns
ObjectList1D
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo().images() >>> assert len(self.compress([True, False, True])) == 2
- peek()[source]¶
Return the first object dictionary
- Returns
object dictionary
- Return type
ObjT
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> self = dset.images() >>> assert self.peek()['id'] == 1 >>> # Check that subsets return correct items >>> sub0 = self.compress([i % 2 == 0 for i in range(len(self))]) >>> sub1 = self.compress([i % 2 == 1 for i in range(len(self))]) >>> assert sub0.peek()['id'] == 1 >>> assert sub1.peek()['id'] == 2
- lookup(key, default=NoParam, keepid=False)[source]¶
Lookup a list of object attributes
- Parameters
key (str | Iterable) – name of the property you want to lookup can also be a list of names, in which case we return a dict
default – if specified, uses this value if it doesn’t exist in an ObjT.
keepid – if True, return a mapping from ids to the property
- Returns
a list of whatever type the object is Dict[str, ObjT]
- Return type
List[ObjT]
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> self = dset.annots() >>> self.lookup('id') >>> key = ['id'] >>> default = None >>> self.lookup(key=['id', 'image_id']) >>> self.lookup(key=['id', 'image_id']) >>> self.lookup(key='foo', default=None, keepid=True) >>> self.lookup(key=['foo'], default=None, keepid=True) >>> self.lookup(key=['id', 'image_id'], keepid=True)
- get(key, default=NoParam, keepid=False)[source]¶
Lookup a list of object attributes
- Parameters
key (str) – name of the property you want to lookup
default – if specified, uses this value if it doesn’t exist in an ObjT.
keepid – if True, return a mapping from ids to the property
- Returns
a list of whatever type the object is Dict[str, ObjT]
- Return type
List[ObjT]
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> self = dset.annots() >>> self.get('id') >>> self.get(key='foo', default=None, keepid=True)
- set(key, values)[source]¶
Assign a value to each annotation
- Parameters
key (str) – the annotation property to modify
values (Iterable | Any) – an iterable of values to set for each annot in the dataset. If the item is not iterable, it is assigned to all objects.
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> self = dset.annots() >>> self.set('my-key1', 'my-scalar-value') >>> self.set('my-key2', np.random.rand(len(self))) >>> print('dset.imgs = {}'.format(ub.repr2(dset.imgs, nl=1))) >>> self.get('my-key2')
- class kwcoco.coco_objects1d.ObjectGroups(groups, dset)[source]¶
Bases:
NiceRepr
An object for holding a groups of
ObjectList1D
objects
- class kwcoco.coco_objects1d.Categories(ids, dset)[source]¶
Bases:
ObjectList1D
Vectorized access to category attributes
Example
>>> from kwcoco.coco_objects1d import Categories # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> ids = list(dset.cats.keys()) >>> self = Categories(ids, dset) >>> print('self.name = {!r}'.format(self.name)) >>> print('self.supercategory = {!r}'.format(self.supercategory))
- property cids¶
- property name¶
- property supercategory¶
- class kwcoco.coco_objects1d.Videos(ids, dset)[source]¶
Bases:
ObjectList1D
Vectorized access to video attributes
Example
>>> from kwcoco.coco_objects1d import Videos # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes5') >>> ids = list(dset.index.videos.keys()) >>> self = Videos(ids, dset) >>> print('self = {!r}'.format(self))
- property images¶
Example: >>> import kwcoco >>> self = kwcoco.CocoDataset.demo(‘vidshapes8’).videos() >>> print(self.images) <ImageGroups(n=8, m=2.0, s=0.0)>
- class kwcoco.coco_objects1d.Images(ids, dset)[source]¶
Bases:
ObjectList1D
Vectorized access to image attributes
- property coco_images¶
- property gids¶
- property gname¶
- property gpath¶
- property width¶
- property height¶
- property size¶
Example: >>> import kwcoco >>> self = kwcoco.CocoDataset.demo().images() >>> self._dset._ensure_imgsize() >>> print(self.size) [(512, 512), (300, 250), (256, 256)]
- property area¶
Example: >>> import kwcoco >>> self = kwcoco.CocoDataset.demo().images() >>> self._dset._ensure_imgsize() >>> print(self.area) [262144, 75000, 65536]
- property n_annots¶
Example: >>> import kwcoco >>> self = kwcoco.CocoDataset.demo().images() >>> print(ub.repr2(self.n_annots, nl=0)) [9, 2, 0]
- property aids¶
Example: >>> import kwcoco >>> self = kwcoco.CocoDataset.demo().images() >>> print(ub.repr2(list(map(list, self.aids)), nl=0)) [[1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 11], []]
- property annots¶
Example: >>> import kwcoco >>> self = kwcoco.CocoDataset.demo().images() >>> print(self.annots) <AnnotGroups(n=3, m=3.7, s=3.9)>
- class kwcoco.coco_objects1d.Annots(ids, dset)[source]¶
Bases:
ObjectList1D
Vectorized access to annotation attributes
- property aids¶
The annotation ids of this column of annotations
- property images¶
Get the column of images
- Returns
Images
- property image_id¶
- property category_id¶
- property cids¶
Get the column of category-ids
- Returns
List[int]
- property cnames¶
Get the column of category names
- Returns
List[int]
- property detections¶
Get the kwimage-style detection objects
- Returns
kwimage.Detections
Example
>>> # xdoctest: +REQUIRES(module:kwimage) >>> import kwcoco >>> self = kwcoco.CocoDataset.demo('shapes32').annots([1, 2, 11]) >>> dets = self.detections >>> print('dets.data = {!r}'.format(dets.data)) >>> print('dets.meta = {!r}'.format(dets.meta))
- property boxes¶
Get the column of kwimage-style bounding boxes
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo().annots([1, 2, 11]) >>> print(self.boxes) <Boxes(xywh, array([[ 10, 10, 360, 490], [350, 5, 130, 290], [124, 96, 45, 18]]))>
- property xywh¶
Returns raw boxes
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo().annots([1, 2, 11]) >>> print(self.xywh)
- class kwcoco.coco_objects1d.AnnotGroups(groups, dset)[source]¶
Bases:
ObjectGroups
- property cids¶
- property cnames¶
- class kwcoco.coco_objects1d.ImageGroups(groups, dset)[source]¶
Bases:
ObjectGroups
kwcoco.coco_schema module¶
kwcoco.coco_sql_dataset module¶
kwcoco.compat_dataset module¶
A wrapper around the basic kwcoco dataset with a pycocotools API.
We do not recommend using this API because it has some idiosyncrasies, where names can be missleading and APIs are not always clear / efficient: e.g.
catToImgs returns integer image ids but imgToAnns returns annotation dictionaries.
showAnns takes a dictionary list as an argument instead of an integer list
The cool thing is that this extends the kwcoco API so you can drop this for compatibility with the old API, but you still get access to all of the kwcoco API including dynamic addition / removal of categories / annotations / images.
- class kwcoco.compat_dataset.COCO(annotation_file=None, **kw)[source]¶
Bases:
CocoDataset
A wrapper around the basic kwcoco dataset with a pycocotools API.
Example
>>> from kwcoco.compat_dataset import * # NOQA >>> import kwcoco >>> basic = kwcoco.CocoDataset.demo('shapes8') >>> self = COCO(basic.dataset) >>> self.info() >>> print('self.imgToAnns = {!r}'.format(self.imgToAnns[1])) >>> print('self.catToImgs = {!r}'.format(self.catToImgs))
- property imgToAnns¶
- property catToImgs¶
unlike the name implies, this actually goes from category to image ids Name retained for backward compatibility
- getAnnIds(imgIds=[], catIds=[], areaRng=[], iscrowd=None)[source]¶
Get ann ids that satisfy given filter conditions. default skips that filter
- Parameters
imgIds (List[int]) – get anns for given imgs
catIds (List[int]) – get anns for given cats
areaRng (List[float]) – get anns for given area range (e.g. [0 inf])
iscrowd (bool) – get anns for given crowd label (False or True)
- Returns
integer array of ann ids
- Return type
List[int]
Example
>>> from kwcoco.compat_dataset import * # NOQA >>> import kwcoco >>> self = COCO(kwcoco.CocoDataset.demo('shapes8').dataset) >>> self.getAnnIds() >>> self.getAnnIds(imgIds=1) >>> self.getAnnIds(imgIds=[1]) >>> self.getAnnIds(catIds=[3])
- getCatIds(catNms=[], supNms=[], catIds=[])[source]¶
filtering parameters. default skips that filter.
- Parameters
catNms (List[str]) – get cats for given cat names
supNms (List[str]) – get cats for given supercategory names
catIds (List[int]) – get cats for given cat ids
- Returns
integer array of cat ids
- Return type
List[int]
Example
>>> from kwcoco.compat_dataset import * # NOQA >>> import kwcoco >>> self = COCO(kwcoco.CocoDataset.demo('shapes8').dataset) >>> self.getCatIds() >>> self.getCatIds(catNms=['superstar']) >>> self.getCatIds(supNms=['raster']) >>> self.getCatIds(catIds=[3])
- getImgIds(imgIds=[], catIds=[])[source]¶
Get img ids that satisfy given filter conditions.
- Parameters
imgIds (List[int]) – get imgs for given ids
catIds (List[int]) – get imgs with all given cats
- Returns
integer array of img ids
- Return type
List[int]
Example
>>> from kwcoco.compat_dataset import * # NOQA >>> import kwcoco >>> self = COCO(kwcoco.CocoDataset.demo('shapes8').dataset) >>> self.getImgIds(imgIds=[1, 2]) >>> self.getImgIds(catIds=[3, 6, 7]) >>> self.getImgIds(catIds=[3, 6, 7], imgIds=[1, 2])
- loadAnns(ids=[])[source]¶
Load anns with the specified ids.
- Parameters
ids (List[int]) – integer ids specifying anns
- Returns
loaded ann objects
- Return type
List[dict]
- loadCats(ids=[])[source]¶
Load cats with the specified ids.
- Parameters
ids (List[int]) – integer ids specifying cats
- Returns
loaded cat objects
- Return type
List[dict]
- loadImgs(ids=[])[source]¶
Load anns with the specified ids.
- Parameters
ids (List[int]) – integer ids specifying img
- Returns
loaded img objects
- Return type
List[dict]
- showAnns(anns, draw_bbox=False)[source]¶
Display the specified annotations.
- Parameters
anns (List[Dict]) – annotations to display
- loadRes(resFile)[source]¶
Load result file and return a result api object.
- Parameters
resFile (str) – file name of result file
- Returns
res result api object
- Return type
- download(tarDir=None, imgIds=[])[source]¶
Download COCO images from mscoco.org server.
- Parameters
tarDir (str) – COCO results directory name
imgIds (list) – images to be downloaded
- loadNumpyAnnotations(data)[source]¶
Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class}
- Parameters
data (numpy.ndarray)
- Returns
annotations (python nested list)
- Return type
List[Dict]
- annToRLE(ann)[source]¶
Convert annotation which can be polygons, uncompressed RLE to RLE.
- Returns
kwimage.Mask
Note
This requires the C-extensions for kwimage to be installed due to the need to interface with the bytes RLE format.
Example
>>> from kwcoco.compat_dataset import * # NOQA >>> import kwcoco >>> self = COCO(kwcoco.CocoDataset.demo('shapes8').dataset) >>> try: >>> rle = self.annToRLE(self.anns[1]) >>> except NotImplementedError: >>> import pytest >>> pytest.skip('missing kwimage c-extensions') >>> else: >>> assert len(rle['counts']) > 2 >>> # xdoctest: +REQUIRES(module:pycocotools) >>> self.conform(legacy=True) >>> orig = self._aspycoco().annToRLE(self.anns[1])
kwcoco.exceptions module¶
- exception kwcoco.exceptions.AddError[source]¶
Bases:
ValueError
Generic error when trying to add a category/annotation/image
- exception kwcoco.exceptions.DuplicateAddError[source]¶
Bases:
ValueError
Error when trying to add a duplicate item
- exception kwcoco.exceptions.InvalidAddError[source]¶
Bases:
ValueError
Error when trying to invalid data
- exception kwcoco.exceptions.CoordinateCompatibilityError[source]¶
Bases:
ValueError
Error when trying to perform operations on data in different coordinate systems.
kwcoco.kpf module¶
WIP:
Conversions to and from KPF format.
kwcoco.kw18 module¶
A helper for converting COCO to / from KW18 format.
KW18 File Format https://docs.google.com/spreadsheets/d/1DFCwoTKnDv8qfy3raM7QXtir2Fjfj9j8-z8px5Bu0q8/edit#gid=10
The kw18.trk files are text files, space delimited; each row is one frame of one track and all rows have the same number of columns. The fields are:
01) track_ID : identifies the track
02) num_frames: number of frames in the track
03) frame_id : frame number for this track sample
04) loc_x : X-coordinate of the track (image/ground coords)
05) loc_y : Y-coordinate of the track (image/ground coords)
06) vel_x : X-velocity of the object (image/ground coords)
07) vel_y : Y-velocity of the object (image/ground coords)
08) obj_loc_x : X-coordinate of the object (image coords)
09) obj_loc_y : Y-coordinate of the object (image coords)
10) bbox_min_x : minimum X-coordinate of bounding box (image coords)
11) bbox_min_y : minimum Y-coordinate of bounding box (image coords)
12) bbox_max_x : maximum X-coordinate of bounding box (image coords)
13) bbox_max_y : maximum Y-coordinate of bounding box (image coords)
14) area : area of object (pixels)
15) world_loc_x : X-coordinate of object in world
16) world_loc_y : Y-coordinate of object in world
17) world_loc_z : Z-coordiante of object in world
18) timestamp : timestamp of frame (frames)
For the location and velocity of object centroids, use fields 4-7.
Bounding box is specified using coordinates of the top-left and bottom
right corners. Fields 15-17 may be ignored.
The kw19.trk and kw20.trk files, when present, add the following field(s):
19) object class: estimated class of the object, either 1 (person), 2
(vehicle), or 3 (other).
20) Activity ID -- refer to activities.txt for index and list of activities.
- class kwcoco.kw18.KW18(data)[source]¶
Bases:
DataFrameArray
A DataFrame like object that stores KW18 column data
Example
>>> import kwcoco >>> from kwcoco.kw18 import KW18 >>> coco_dset = kwcoco.CocoDataset.demo('shapes') >>> kw18_dset = KW18.from_coco(coco_dset) >>> print(kw18_dset.pandas())
- DEFAULT_COLUMNS = ['track_id', 'track_length', 'frame_number', 'tracking_plane_loc_x', 'tracking_plane_loc_y', 'velocity_x', 'velocity_y', 'image_loc_x', 'image_loc_y', 'img_bbox_tl_x', 'img_bbox_tl_y', 'img_bbox_br_x', 'img_bbox_br_y', 'area', 'world_loc_x', 'world_loc_y', 'world_loc_z', 'timestamp', 'confidence', 'object_type_id', 'activity_type_id']¶
- to_coco(image_paths=None, video_name=None)[source]¶
Translates a kw18 files to a CocoDataset.
Note
kw18 does not contain complete information, and as such the returned coco dataset may need to be augmented.
- Parameters
image_paths (Dict[int, str], default=None) – if specified, maps frame numbers to image file paths.
video_name (str, default=None) – if specified records the name of the video this kw18 belongs to
Todo
[X] allow kwargs to specify path to frames / videos
Example
>>> from kwcoco.kw18 import KW18 >>> from os.path import join >>> import ubelt as ub >>> import kwimage >>> # Prep test data - autogen a demo kw18 and write it to disk >>> dpath = ub.ensure_app_cache_dir('kwcoco/kw18') >>> kw18_fpath = join(dpath, 'test.kw18') >>> KW18.demo().dump(kw18_fpath) >>> # >>> # Load the kw18 file >>> self = KW18.load(kw18_fpath) >>> # Pretend that these image correspond to kw18 frame numbers >>> frame_names = [kwimage.grab_test_image_fpath(k) for k in kwimage.grab_test_image.keys()] >>> frame_ids = sorted(set(self['frame_number'])) >>> image_paths = dict(zip(frame_ids, frame_names)) >>> # >>> # Convert the kw18 to kwcoco and specify paths to images >>> coco_dset = self.to_coco(image_paths=image_paths, video_name='dummy.mp4') >>> # >>> # Now we can draw images >>> canvas = coco_dset.draw_image(1) >>> # xdoctest: +REQUIRES(--draw) >>> kwimage.imwrite('foo.jpg', canvas) >>> # Draw all iamges >>> for gid in coco_dset.imgs.keys(): >>> canvas = coco_dset.draw_image(gid) >>> fpath = join(dpath, 'gid_{}.jpg'.format(gid)) >>> print('write fpath = {!r}'.format(fpath)) >>> kwimage.imwrite(fpath, canvas)
- classmethod load(file)[source]¶
Example
>>> import kwcoco >>> from kwcoco.kw18 import KW18 >>> coco_dset = kwcoco.CocoDataset.demo('shapes') >>> kw18_dset = KW18.from_coco(coco_dset) >>> print(kw18_dset.pandas())
kwcoco.sensorchan_spec module¶
This is an extension of kwcoco.channel_spec
, which augments channel
information with an associated sensor attribute. Eventually, this will entirely
replace the channel spec.
Example
>>> # xdoctest: +REQUIRES(module:lark)
>>> # hack for 3.6
>>> from kwcoco import sensorchan_spec
>>> import kwcoco
>>> kwcoco.SensorChanSpec = sensorchan_spec.SensorChanSpec
>>> self = kwcoco.SensorChanSpec.coerce('sensor0:B1|B8|B8a|B10|B11,sensor1:B11|X.2|Y:2:6,sensor2:r|g|b|disparity|gauss|B8|B11,sensor3:r|g|b|flowx|flowy|distri|B10|B11')
>>> self.normalize()
- class kwcoco.sensorchan_spec.SensorSpec(spec)[source]¶
Bases:
NiceRepr
A simple wrapper for sensors in case we want to do anything fancy with them later. For now they are just a string.
- class kwcoco.sensorchan_spec.SensorChanSpec(spec: str)[source]¶
Bases:
NiceRepr
The public facing API for the sensor / channel specification
Example
>>> # xdoctest: +REQUIRES(module:lark) >>> from kwcoco.sensorchan_spec import SensorChanSpec >>> self = SensorChanSpec('(L8,S2):BGR,WV:BGR,S2:nir,L8:land.0:4') >>> s1 = self.normalize() >>> s2 = self.concise() >>> streams = self.streams() >>> print(s1) >>> print(s2) >>> print('streams = {}'.format(ub.repr2(streams, sv=1, nl=1))) L8:BGR,S2:BGR,WV:BGR,S2:nir,L8:land.0|land.1|land.2|land.3 (L8,S2,WV):BGR,L8:land:4,S2:nir streams = [ L8:BGR, S2:BGR, WV:BGR, S2:nir, L8:land.0|land.1|land.2|land.3, ]
Example
>>> # Check with generic sensors >>> # xdoctest: +REQUIRES(module:lark) >>> from kwcoco.sensorchan_spec import SensorChanSpec >>> import kwcoco >>> self = SensorChanSpec('(*):BGR,*:BGR,*:nir,*:land.0:4') >>> self.concise().normalize() >>> s1 = self.normalize() >>> s2 = self.concise() >>> print(s1) >>> print(s2) *:BGR,*:BGR,*:nir,*:land.0|land.1|land.2|land.3 (*,*):BGR,*:(nir,land:4) >>> import kwcoco >>> c = kwcoco.ChannelSpec.coerce('BGR,BGR,nir,land.0:8') >>> c1 = c.normalize() >>> c2 = c.concise() >>> print(c1) >>> print(c2)
Example
>>> # Check empty channels >>> # xdoctest: +REQUIRES(module:lark) >>> from kwcoco.sensorchan_spec import SensorChanSpec >>> import kwcoco >>> print(SensorChanSpec('*:').normalize()) *: >>> print(SensorChanSpec('sen:').normalize()) sen: >>> print(SensorChanSpec('sen:').normalize().concise()) sen: >>> print(SensorChanSpec('sen:').concise().normalize().concise()) sen:
- classmethod coerce(data)[source]¶
Attempt to interpret the data as a channel specification
- Returns
SensorChanSpec
Example
>>> # xdoctest: +REQUIRES(module:lark) >>> from kwcoco.sensorchan_spec import * # NOQA >>> from kwcoco.sensorchan_spec import SensorChanSpec >>> data = SensorChanSpec.coerce(3) >>> assert SensorChanSpec.coerce(data).normalize().spec == '*:u0|u1|u2' >>> data = SensorChanSpec.coerce(3) >>> assert data.spec == 'u0|u1|u2' >>> assert SensorChanSpec.coerce(data).spec == 'u0|u1|u2' >>> data = SensorChanSpec.coerce('u:3') >>> assert data.normalize().spec == '*:u.0|u.1|u.2'
- streams()[source]¶
- Returns
List of sensor-names and fused channel specs
- Return type
List[FusedSensorChanSpec]
- late_fuse(other)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:lark) >>> import kwcoco >>> a = kwcoco.SensorChanSpec.coerce('A|B|C,edf') >>> b = kwcoco.SensorChanSpec.coerce('A12') >>> c = kwcoco.SensorChanSpec.coerce('') >>> d = kwcoco.SensorChanSpec.coerce('rgb') >>> print(a.late_fuse(b).spec) >>> print((a + b).spec) >>> print((b + a).spec) >>> print((a + b + c).spec) >>> print(sum([a, b, c, d]).spec) A|B|C,edf,A12 A|B|C,edf,A12 A12,A|B|C,edf A|B|C,edf,A12 A|B|C,edf,A12,rgb >>> import kwcoco >>> a = kwcoco.SensorChanSpec.coerce('A|B|C,edf').normalize() >>> b = kwcoco.SensorChanSpec.coerce('A12').normalize() >>> c = kwcoco.SensorChanSpec.coerce('').normalize() >>> d = kwcoco.SensorChanSpec.coerce('rgb').normalize() >>> print(a.late_fuse(b).spec) >>> print((a + b).spec) >>> print((b + a).spec) >>> print((a + b + c).spec) >>> print(sum([a, b, c, d]).spec) *:A|B|C,*:edf,*:A12 *:A|B|C,*:edf,*:A12 *:A12,*:A|B|C,*:edf *:A|B|C,*:edf,*:A12,*: *:A|B|C,*:edf,*:A12,*:,*:rgb >>> print((a.late_fuse(b)).concise()) >>> print(((a + b)).concise()) >>> print(((b + a)).concise()) >>> print(((a + b + c)).concise()) >>> print((sum([a, b, c, d])).concise()) *:(A|B|C,edf,A12) *:(A|B|C,edf,A12) *:(A12,A|B|C,edf) *:(A|B|C,edf,A12,) *:(A|B|C,edf,A12,,r|g|b)
- matching_sensor(sensor)[source]¶
Get the components corresponding to a specific sensor
- Parameters
sensor (str) – the name of the sensor to match
Example
>>> # xdoctest: +REQUIRES(module:lark) >>> import kwcoco >>> self = kwcoco.SensorChanSpec.coerce('(S1,S2):(a|b|c),S2:c|d|e') >>> sensor = 'S2' >>> new = self.matching_sensor(sensor) >>> print(f'new={new}') new=S2:a|b|c,S2:c|d|e >>> print(self.matching_sensor('S1')) S1:a|b|c >>> print(self.matching_sensor('S3')) S3:
- property chans¶
Returns the channel-only spec, ONLY if all of the sensors are the same
Example
>>> # xdoctest: +REQUIRES(module:lark) >>> import kwcoco >>> self = kwcoco.SensorChanSpec.coerce('(S1,S2):(a|b|c),S2:c|d|e') >>> import pytest >>> with pytest.raises(Exception): >>> self.chans >>> print(self.matching_sensor('S1').chans.spec) >>> print(self.matching_sensor('S2').chans.spec) a|b|c a|b|c,c|d|e
- class kwcoco.sensorchan_spec.FusedSensorChanSpec(sensor, chans)[source]¶
Bases:
SensorChanSpec
A single sensor a corresponding fused channels.
- property chans¶
- property spec¶
- class kwcoco.sensorchan_spec.SensorChanNode(sensor, chan)[source]¶
Bases:
object
TODO: just replace this with the spec class itself?
- property spec¶
- class kwcoco.sensorchan_spec.FusedChanNode(chan)[source]¶
Bases:
object
TODO: just replace this with the spec class itself?
Example
s = FusedChanNode(‘a|b|c.0|c.1|c.2’) c = s.concise() print(s) print(c)
- property spec¶
- class kwcoco.sensorchan_spec.SensorChanTransformer(concise_channels=1, concise_sensors=1)[source]¶
Bases:
Transformer
Given a parsed tree for a sensor-chan spec, can transform it into useful forms.
Todo
Make the classes that hold the underlying data more robust such that they either use the existing channel spec or entirely replace it. (probably the former). Also need to add either a FusedSensorChan node that is restircted to only a single sensor and group of fused channels.
- kwcoco.sensorchan_spec.normalize_sensor_chan(spec)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:lark) >>> from kwcoco.sensorchan_spec import * # NOQA >>> spec = 'L8:mat:4,L8:red,S2:red,S2:forest|brush,S2:mat.0|mat.1|mat.2|mat.3' >>> r1 = normalize_sensor_chan(spec) >>> spec = 'L8:r|g|b,L8:r|g|b' >>> r2 = normalize_sensor_chan(spec) >>> print(f'r1={r1}') >>> print(f'r2={r2}') r1=L8:mat.0|mat.1|mat.2|mat.3,L8:red,S2:red,S2:forest|brush,S2:mat.0|mat.1|mat.2|mat.3 r2=L8:r|g|b,L8:r|g|b
- kwcoco.sensorchan_spec.concise_sensor_chan(spec)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:lark) >>> from kwcoco.sensorchan_spec import * # NOQA >>> spec = 'L8:mat.0|mat.1|mat.2|mat.3,L8:red,S2:red,S2:forest|brush,S2:mat.0|mat.1|mat.2|mat.3' >>> concise_spec = concise_sensor_chan(spec) >>> normed_spec = normalize_sensor_chan(concise_spec) >>> concise_spec2 = concise_sensor_chan(normed_spec) >>> assert concise_spec2 == concise_spec >>> print(concise_spec) (L8,S2):(mat:4,red),S2:forest|brush
Module contents¶
The Kitware COCO module defines a variant of the Microsoft COCO format, originally developed for the “collected images in context” object detection challenge. We are backwards compatible with the original module, but we also have improved implementations in several places, including segmentations, keypoints, annotation tracks, multi-spectral images, and videos (which represents a generic sequence of images).
A kwcoco file is a “manifest” that serves as a single reference that points to all images, categories, and annotations in a computer vision dataset. Thus, when applying an algorithm to a dataset, it is sufficient to have the algorithm take one dataset parameter: the path to the kwcoco file. Generally a kwcoco file will live in a “bundle” directory along with the data that it references, and paths in the kwcoco file will be relative to the location of the kwcoco file itself.
The main data structure in this model is largely based on the implementation in https://github.com/cocodataset/cocoapi It uses the same efficient core indexing data structures, but in our implementation the indexing can be optionally turned off, functions are silent by default (with the exception of long running processes, which optionally show progress by default). We support helper functions that add and remove images, categories, and annotations.
The kwcoco.CocoDataset
class is capable of dynamic addition and removal
of categories, images, and annotations. Has better support for keypoints and
segmentation formats than the original COCO format. Despite being written in
Python, this data structure is reasonably efficient.
>>> import kwcoco
>>> import json
>>> # Create demo data
>>> demo = kwcoco.CocoDataset.demo()
>>> # Reroot can switch between absolute / relative-paths
>>> demo.reroot(absolute=True)
>>> # could also use demo.dump / demo.dumps, but this is more explicit
>>> text = json.dumps(demo.dataset)
>>> with open('demo.json', 'w') as file:
>>> file.write(text)
>>> # Read from disk
>>> self = kwcoco.CocoDataset('demo.json')
>>> # Add data
>>> cid = self.add_category('Cat')
>>> gid = self.add_image('new-img.jpg')
>>> aid = self.add_annotation(image_id=gid, category_id=cid, bbox=[0, 0, 100, 100])
>>> # Remove data
>>> self.remove_annotations([aid])
>>> self.remove_images([gid])
>>> self.remove_categories([cid])
>>> # Look at data
>>> import ubelt as ub
>>> print(ub.repr2(self.basic_stats(), nl=1))
>>> print(ub.repr2(self.extended_stats(), nl=2))
>>> print(ub.repr2(self.boxsize_stats(), nl=3))
>>> print(ub.repr2(self.category_annotation_frequency()))
>>> # Inspect data
>>> # xdoctest: +REQUIRES(module:kwplot)
>>> import kwplot
>>> kwplot.autompl()
>>> self.show_image(gid=1)
>>> # Access single-item data via imgs, cats, anns
>>> cid = 1
>>> self.cats[cid]
{'id': 1, 'name': 'astronaut', 'supercategory': 'human'}
>>> gid = 1
>>> self.imgs[gid]
{'id': 1, 'file_name': '...astro.png', 'url': 'https://i.imgur.com/KXhKM72.png'}
>>> aid = 3
>>> self.anns[aid]
{'id': 3, 'image_id': 1, 'category_id': 3, 'line': [326, 369, 500, 500]}
>>> # Access multi-item data via the annots and images helper objects
>>> aids = self.index.gid_to_aids[2]
>>> annots = self.annots(aids)
>>> print('annots = {}'.format(ub.repr2(annots, nl=1, sv=1)))
annots = <Annots(num=2)>
>>> annots.lookup('category_id')
[6, 4]
>>> annots.lookup('bbox')
[[37, 6, 230, 240], [124, 96, 45, 18]]
>>> # built in conversions to efficient kwimage array DataStructures
>>> print(ub.repr2(annots.detections.data, sv=1))
{
'boxes': <Boxes(xywh,
array([[ 37., 6., 230., 240.],
[124., 96., 45., 18.]], dtype=float32))>,
'class_idxs': [5, 3],
'keypoints': <PointsList(n=2)>,
'segmentations': <PolygonList(n=2)>,
}
>>> gids = list(self.imgs.keys())
>>> images = self.images(gids)
>>> print('images = {}'.format(ub.repr2(images, nl=1, sv=1)))
images = <Images(num=3)>
>>> images.lookup('file_name')
['...astro.png', '...carl.png', '...stars.png']
>>> print('images.annots = {}'.format(images.annots))
images.annots = <AnnotGroups(n=3, m=3.7, s=3.9)>
>>> print('images.annots.cids = {!r}'.format(images.annots.cids))
images.annots.cids = [[1, 2, 3, 4, 5, 5, 5, 5, 5], [6, 4], []]
CocoDataset API¶
The following is a logical grouping of the public kwcoco.CocoDataset API attributes and methods. See the in-code documentation for further details.
CocoDataset classmethods (via MixinCocoExtras)¶
kwcoco.CocoDataset.coerce
- Attempt to transform the input into the intended CocoDataset.
kwcoco.CocoDataset.demo
- Create a toy coco dataset for testing and demo puposes
kwcoco.CocoDataset.random
- Creates a random CocoDataset according to distribution parameters
CocoDataset classmethods (via CocoDataset)¶
kwcoco.CocoDataset.from_coco_paths
- Constructor from multiple coco file paths.
kwcoco.CocoDataset.from_data
- Constructor from a json dictionary
kwcoco.CocoDataset.from_image_paths
- Constructor from a list of images paths.
CocoDataset slots¶
kwcoco.CocoDataset.index
- an efficient lookup index into the coco data structure. The index defines its own attributes likeanns
,cats
,imgs
,gid_to_aids
,file_name_to_img
, etc. SeeCocoIndex
for more details on which attributes are available.
kwcoco.CocoDataset.hashid
- If computed, this will be a hash uniquely identifing the dataset. To ensure this is computed seekwcoco.coco_dataset.MixinCocoExtras._build_hashid()
.
kwcoco.CocoDataset.hashid_parts
-
kwcoco.CocoDataset.tag
- A tag indicating the name of the dataset.
kwcoco.CocoDataset.dataset
- raw json data structure. This is the base dictionary that contains {‘annotations’: List, ‘images’: List, ‘categories’: List}
kwcoco.CocoDataset.bundle_dpath
- If known, this is the root path that all image file names are relative to. This can also be manually overwritten by the user.
kwcoco.CocoDataset.assets_dpath
-
kwcoco.CocoDataset.cache_dpath
-
CocoDataset properties¶
kwcoco.CocoDataset.anns
-
kwcoco.CocoDataset.cats
-
kwcoco.CocoDataset.cid_to_aids
-
kwcoco.CocoDataset.data_fpath
-
kwcoco.CocoDataset.data_root
-
kwcoco.CocoDataset.fpath
- if known, this stores the filepath the dataset was loaded from
kwcoco.CocoDataset.gid_to_aids
-
kwcoco.CocoDataset.img_root
-
kwcoco.CocoDataset.imgs
-
kwcoco.CocoDataset.n_annots
-
kwcoco.CocoDataset.n_cats
-
kwcoco.CocoDataset.n_images
-
kwcoco.CocoDataset.n_videos
-
kwcoco.CocoDataset.name_to_cat
-
CocoDataset methods (via MixinCocoAddRemove)¶
kwcoco.CocoDataset.add_annotation
- Add an annotation to the dataset (dynamically updates the index)
kwcoco.CocoDataset.add_annotations
- Faster less-safe multi-item alternative to add_annotation.
kwcoco.CocoDataset.add_category
- Adds a category
kwcoco.CocoDataset.add_image
- Add an image to the dataset (dynamically updates the index)
kwcoco.CocoDataset.add_images
- Faster less-safe multi-item alternative
kwcoco.CocoDataset.add_video
- Add a video to the dataset (dynamically updates the index)
kwcoco.CocoDataset.clear_annotations
- Removes all annotations (but not images and categories)
kwcoco.CocoDataset.clear_images
- Removes all images and annotations (but not categories)
kwcoco.CocoDataset.ensure_category
- Likeadd_category()
, but returns the existing category id if it already exists instead of failing. In this case all metadata is ignored.
kwcoco.CocoDataset.ensure_image
- Likeadd_image()
,, but returns the existing image id if it already exists instead of failing. In this case all metadata is ignored.
kwcoco.CocoDataset.remove_annotation
- Remove a single annotation from the dataset
kwcoco.CocoDataset.remove_annotation_keypoints
- Removes all keypoints with a particular category
kwcoco.CocoDataset.remove_annotations
- Remove multiple annotations from the dataset.
kwcoco.CocoDataset.remove_categories
- Remove categories and all annotations in those categories. Currently does not change any hierarchy information
kwcoco.CocoDataset.remove_images
- Remove images and any annotations contained by them
kwcoco.CocoDataset.remove_keypoint_categories
- Removes all keypoints of a particular category as well as all annotation keypoints with those ids.
kwcoco.CocoDataset.remove_videos
- Remove videos and any images / annotations contained by them
kwcoco.CocoDataset.set_annotation_category
- Sets the category of a single annotation
CocoDataset methods (via MixinCocoObjects)¶
kwcoco.CocoDataset.annots
- Return vectorized annotation objects
kwcoco.CocoDataset.categories
- Return vectorized category objects
kwcoco.CocoDataset.images
- Return vectorized image objects
kwcoco.CocoDataset.videos
- Return vectorized video objects
CocoDataset methods (via MixinCocoStats)¶
kwcoco.CocoDataset.basic_stats
- Reports number of images, annotations, and categories.
kwcoco.CocoDataset.boxsize_stats
- Compute statistics about bounding box sizes.
kwcoco.CocoDataset.category_annotation_frequency
- Reports the number of annotations of each category
kwcoco.CocoDataset.category_annotation_type_frequency
- Reports the number of annotations of each type for each category
kwcoco.CocoDataset.conform
- Make the COCO file conform a stricter spec, infers attibutes where possible.
kwcoco.CocoDataset.extended_stats
- Reports number of images, annotations, and categories.
kwcoco.CocoDataset.find_representative_images
- Find images that have a wide array of categories. Attempt to find the fewest images that cover all categories using images that contain both a large and small number of annotations.
kwcoco.CocoDataset.stats
- This function corresponds tokwcoco.cli.coco_stats
.
kwcoco.CocoDataset.validate
- Performs checks on this coco dataset.
CocoDataset methods (via MixinCocoAccessors)¶
kwcoco.CocoDataset.category_graph
- Construct a networkx category hierarchy
kwcoco.CocoDataset.delayed_load
- Experimental method
kwcoco.CocoDataset.get_auxiliary_fpath
- Returns the full path to auxiliary data for an image
kwcoco.CocoDataset.get_image_fpath
- Returns the full path to the image
kwcoco.CocoDataset.keypoint_categories
- Construct a consistent CategoryTree representation of keypoint classes
kwcoco.CocoDataset.load_annot_sample
- Reads the chip of an annotation. Note this is much less efficient than using a sampler, but it doesn’t require disk cache.
kwcoco.CocoDataset.load_image
- Reads an image from disk and
kwcoco.CocoDataset.object_categories
- Construct a consistent CategoryTree representation of object classes
CocoDataset methods (via CocoDataset)¶
kwcoco.CocoDataset.copy
- Deep copies this object
kwcoco.CocoDataset.dump
- Writes the dataset out to the json format
kwcoco.CocoDataset.dumps
- Writes the dataset out to the json format
kwcoco.CocoDataset.subset
- Return a subset of the larger coco dataset by specifying which images to port. All annotations in those images will be taken.
kwcoco.CocoDataset.union
- Merges multipleCocoDataset
items into one. Names and associations are retained, but ids may be different.
kwcoco.CocoDataset.view_sql
- Create a cached SQL interface to this dataset suitable for large scale multiprocessing use cases.
CocoDataset methods (via MixinCocoExtras)¶
kwcoco.CocoDataset.corrupted_images
- Check for images that don’t exist or can’t be opened
kwcoco.CocoDataset.missing_images
- Check for images that don’t exist
kwcoco.CocoDataset.rename_categories
- Rename categories with a potentially coarser categorization.
kwcoco.CocoDataset.reroot
- Rebase image/data paths onto a new image/data root.
CocoDataset methods (via MixinCocoDraw)¶
kwcoco.CocoDataset.draw_image
- Use kwimage to draw all annotations on an image and return the pixels as a numpy array.
kwcoco.CocoDataset.imread
- Loads a particular image
kwcoco.CocoDataset.show_image
- Use matplotlib to show an image with annotations overlaid
- class kwcoco.AbstractCocoDataset[source]¶
Bases:
ABC
This is a common base for all variants of the Coco Dataset
At the time of writing there is kwcoco.CocoDataset (which is the dictionary-based backend), and the kwcoco.coco_sql_dataset.CocoSqlDataset, which is experimental.
- class kwcoco.CategoryTree(graph=None, checks=True)[source]¶
Bases:
NiceRepr
Wrapper that maintains flat or hierarchical category information.
Helps compute softmaxes and probabilities for tree-based categories where a directed edge (A, B) represents that A is a superclass of B.
Note
There are three basic properties that this object maintains:
node: Alphanumeric string names that should be generally descriptive. Using spaces and special characters in these names is discouraged, but can be done. This is the COCO category "name" attribute. For categories this may be denoted as (name, node, cname, catname). id: The integer id of a category should ideally remain consistent. These are often given by a dataset (e.g. a COCO dataset). This is the COCO category "id" attribute. For categories this is often denoted as (id, cid). index: Contigous zero-based indices that indexes the list of categories. These should be used for the fastest access in backend computation tasks. Typically corresponds to the ordering of the channels in the final linear layer in an associated model. For categories this is often denoted as (index, cidx, idx, or cx).
- Variables
idx_to_node (List[str]) – a list of class names. Implicitly maps from index to category name.
id_to_node (Dict[int, str]) – maps integer ids to category names
node_to_idx (Dict[str, int]) – maps category names to indexes
graph (networkx.Graph) – a Graph that stores any hierarchy information. For standard mutually exclusive classes, this graph is edgeless. Nodes in this graph can maintain category attributes / properties.
idx_groups (List[List[int]]) – groups of category indices that share the same parent category.
Example
>>> from kwcoco.category_tree import * >>> graph = nx.from_dict_of_lists({ >>> 'background': [], >>> 'foreground': ['animal'], >>> 'animal': ['mammal', 'fish', 'insect', 'reptile'], >>> 'mammal': ['dog', 'cat', 'human', 'zebra'], >>> 'zebra': ['grevys', 'plains'], >>> 'grevys': ['fred'], >>> 'dog': ['boxer', 'beagle', 'golden'], >>> 'cat': ['maine coon', 'persian', 'sphynx'], >>> 'reptile': ['bearded dragon', 't-rex'], >>> }, nx.DiGraph) >>> self = CategoryTree(graph) >>> print(self) <CategoryTree(nNodes=22, maxDepth=6, maxBreadth=4...)>
Example
>>> # The coerce classmethod is the easiest way to create an instance >>> import kwcoco >>> kwcoco.CategoryTree.coerce(['a', 'b', 'c']) <CategoryTree...nNodes=3, nodes=...'a', 'b', 'c'... >>> kwcoco.CategoryTree.coerce(4) <CategoryTree...nNodes=4, nodes=...'class_1', 'class_2', 'class_3', ... >>> kwcoco.CategoryTree.coerce(4)
- classmethod from_mutex(nodes, bg_hack=True)[source]¶
- Parameters
nodes (List[str]) – or a list of class names (in which case they will all be assumed to be mutually exclusive)
Example
>>> print(CategoryTree.from_mutex(['a', 'b', 'c'])) <CategoryTree(nNodes=3, ...)>
- classmethod from_json(state)[source]¶
- Parameters
state (Dict) – see __getstate__ / __json__ for details
- classmethod from_coco(categories)[source]¶
Create a CategoryTree object from coco categories
- Parameters
List[Dict] – list of coco-style categories
- classmethod coerce(data, **kw)[source]¶
Attempt to coerce data as a CategoryTree object.
This is primarily useful for when the software stack depends on categories being represent
This will work if the input data is a specially formatted json dict, a list of mutually exclusive classes, or if it is already a CategoryTree. Otherwise an error will be thrown.
- Parameters
data (object) – a known representation of a category tree.
**kwargs – input type specific arguments
- Returns
self
- Return type
- Raises
TypeError - if the input format is unknown –
ValueError - if kwargs are not compatible with the input format –
Example
>>> import kwcoco >>> classes1 = kwcoco.CategoryTree.coerce(3) # integer >>> classes2 = kwcoco.CategoryTree.coerce(classes1.__json__()) # graph dict >>> classes3 = kwcoco.CategoryTree.coerce(['class_1', 'class_2', 'class_3']) # mutex list >>> classes4 = kwcoco.CategoryTree.coerce(classes1.graph) # nx Graph >>> classes5 = kwcoco.CategoryTree.coerce(classes1) # cls >>> # xdoctest: +REQUIRES(module:ndsampler) >>> import ndsampler >>> classes6 = ndsampler.CategoryTree.coerce(3) >>> classes7 = ndsampler.CategoryTree.coerce(classes1) >>> classes8 = kwcoco.CategoryTree.coerce(classes6)
- classmethod demo(key='coco', **kwargs)[source]¶
- Parameters
key (str) – specify which demo dataset to use. Can be ‘coco’ (which uses the default coco demo data). Can be ‘btree’ which creates a binary tree and accepts kwargs ‘r’ and ‘h’ for branching-factor and height. Can be ‘btree2’, which is the same as btree but returns strings
CommandLine
xdoctest -m ~/code/kwcoco/kwcoco/category_tree.py CategoryTree.demo
Example
>>> from kwcoco.category_tree import * >>> self = CategoryTree.demo() >>> print('self = {}'.format(self)) self = <CategoryTree(nNodes=10, maxDepth=2, maxBreadth=4...)>
- property id_to_idx¶
Example: >>> import kwcoco >>> self = kwcoco.CategoryTree.demo() >>> self.id_to_idx[1]
- property idx_to_id¶
Example: >>> import kwcoco >>> self = kwcoco.CategoryTree.demo() >>> self.idx_to_id[0]
- idx_to_ancestor_idxs¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- idx_to_descendants_idxs¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- idx_pairwise_distance¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- is_mutex()[source]¶
Returns True if all categories are mutually exclusive (i.e. flat)
If true, then the classes may be represented as a simple list of class names without any loss of information, otherwise the underlying category graph is necessary to preserve all knowledge.
Todo
[ ] what happens when we have a dummy root?
- property num_classes¶
- property class_names¶
- property category_names¶
- property cats¶
Returns a mapping from category names to category attributes.
If this category tree was constructed from a coco-dataset, then this will contain the coco category attributes.
- Returns
Dict[str, Dict[str, object]]
Example
>>> from kwcoco.category_tree import * >>> self = CategoryTree.demo() >>> print('self.cats = {!r}'.format(self.cats))
- normalize()[source]¶
Applies a normalization scheme to the categories.
Note: this may break other tasks that depend on exact category names.
- Returns
CategoryTree
Example
>>> from kwcoco.category_tree import * # NOQA >>> import kwcoco >>> orig = kwcoco.CategoryTree.demo('animals_v1') >>> self = kwcoco.CategoryTree(nx.relabel_nodes(orig.graph, str.upper)) >>> norm = self.normalize()
- class kwcoco.ChannelSpec(spec, parsed=None)[source]¶
Bases:
BaseChannelSpec
Parse and extract information about network input channel specs for early or late fusion networks.
Behaves like a dictionary of FusedChannelSpec objects
Todo
- [ ] Rename to something that indicates this is a collection of
FusedChannelSpec? MultiChannelSpec?
Note
This class name and API is in flux and subject to change.
Note
The pipe (‘|’) character represents an early-fused input stream, and order matters (it is non-communative).
The comma (‘,’) character separates different inputs streams/branches for a multi-stream/branch network which will be lated fused. Order does not matter
Example
>>> from kwcoco.channel_spec import * # NOQA >>> # Integer spec >>> ChannelSpec.coerce(3) <ChannelSpec(u0|u1|u2) ...>
>>> # single mode spec >>> ChannelSpec.coerce('rgb') <ChannelSpec(rgb) ...>
>>> # early fused input spec >>> ChannelSpec.coerce('rgb|disprity') <ChannelSpec(rgb|disprity) ...>
>>> # late fused input spec >>> ChannelSpec.coerce('rgb,disprity') <ChannelSpec(rgb,disprity) ...>
>>> # early and late fused input spec >>> ChannelSpec.coerce('rgb|ir,disprity') <ChannelSpec(rgb|ir,disprity) ...>
Example
>>> self = ChannelSpec('gray') >>> print('self.info = {}'.format(ub.repr2(self.info, nl=1))) >>> self = ChannelSpec('rgb') >>> print('self.info = {}'.format(ub.repr2(self.info, nl=1))) >>> self = ChannelSpec('rgb|disparity') >>> print('self.info = {}'.format(ub.repr2(self.info, nl=1))) >>> self = ChannelSpec('rgb|disparity,disparity') >>> print('self.info = {}'.format(ub.repr2(self.info, nl=1))) >>> self = ChannelSpec('rgb,disparity,flowx|flowy') >>> print('self.info = {}'.format(ub.repr2(self.info, nl=1)))
Example
>>> specs = [ >>> 'rgb', # and rgb input >>> 'rgb|disprity', # rgb early fused with disparity >>> 'rgb,disprity', # rgb early late with disparity >>> 'rgb|ir,disprity', # rgb early fused with ir and late fused with disparity >>> 3, # 3 unknown channels >>> ] >>> for spec in specs: >>> print('=======================') >>> print('spec = {!r}'.format(spec)) >>> # >>> self = ChannelSpec.coerce(spec) >>> print('self = {!r}'.format(self)) >>> sizes = self.sizes() >>> print('sizes = {!r}'.format(sizes)) >>> print('self.info = {}'.format(ub.repr2(self.info, nl=1))) >>> # >>> item = self._demo_item((1, 1), rng=0) >>> inputs = self.encode(item) >>> components = self.decode(inputs) >>> input_shapes = ub.map_vals(lambda x: x.shape, inputs) >>> component_shapes = ub.map_vals(lambda x: x.shape, components) >>> print('item = {}'.format(ub.repr2(item, precision=1))) >>> print('inputs = {}'.format(ub.repr2(inputs, precision=1))) >>> print('input_shapes = {}'.format(ub.repr2(input_shapes))) >>> print('components = {}'.format(ub.repr2(components, precision=1))) >>> print('component_shapes = {}'.format(ub.repr2(component_shapes, nl=1)))
- property spec¶
- property info¶
- classmethod coerce(data)[source]¶
Attempt to interpret the data as a channel specification
- Returns
ChannelSpec
Example
>>> from kwcoco.channel_spec import * # NOQA >>> data = FusedChannelSpec.coerce(3) >>> assert ChannelSpec.coerce(data).spec == 'u0|u1|u2' >>> data = ChannelSpec.coerce(3) >>> assert data.spec == 'u0|u1|u2' >>> assert ChannelSpec.coerce(data).spec == 'u0|u1|u2' >>> data = ChannelSpec.coerce('u:3') >>> assert data.normalize().spec == 'u.0|u.1|u.2'
- parse()[source]¶
Build internal representation
Example
>>> from kwcoco.channel_spec import * # NOQA >>> self = ChannelSpec('b1|b2|b3|rgb,B:3') >>> print(self.parse()) >>> print(self.normalize().parse()) >>> ChannelSpec('').parse()
Example
>>> base = ChannelSpec('rgb|disparity,flowx|r|flowy') >>> other = ChannelSpec('rgb') >>> self = base.intersection(other) >>> assert self.numel() == 4
- concise()[source]¶
Example
>>> self = ChannelSpec('b1|b2,b3|rgb|B.0,B.1|B.2') >>> print(self.concise().spec) b1|b2,b3|r|g|b|B.0,B.1:3
- normalize()[source]¶
Replace aliases with explicit single-band-per-code specs
- Returns
normalized spec
- Return type
Example
>>> self = ChannelSpec('b1|b2,b3|rgb,B:3') >>> normed = self.normalize() >>> print('self = {}'.format(self)) >>> print('normed = {}'.format(normed)) self = <ChannelSpec(b1|b2,b3|rgb,B:3)> normed = <ChannelSpec(b1|b2,b3|r|g|b,B.0|B.1|B.2)>
- fuse()[source]¶
Fuse all parts into an early fused channel spec
- Returns
FusedChannelSpec
Example
>>> from kwcoco.channel_spec import * # NOQA >>> self = ChannelSpec.coerce('b1|b2,b3|rgb,B:3') >>> fused = self.fuse() >>> print('self = {}'.format(self)) >>> print('fused = {}'.format(fused)) self = <ChannelSpec(b1|b2,b3|rgb,B:3)> fused = <FusedChannelSpec(b1|b2|b3|rgb|B:3)>
- streams()[source]¶
Breaks this spec up into one spec for each early-fused input stream
Example
self = ChannelSpec.coerce(‘r|g,B1|B2,fx|fy’) list(map(len, self.streams()))
- as_path()[source]¶
Returns a string suitable for use in a path.
Note, this may no longer be a valid channel spec
- difference(other)[source]¶
Set difference. Remove all instances of other channels from this set of channels.
Example
>>> from kwcoco.channel_spec import * >>> self = ChannelSpec('rgb|disparity,flowx|r|flowy') >>> other = ChannelSpec('rgb') >>> print(self.difference(other)) >>> other = ChannelSpec('flowx') >>> print(self.difference(other)) <ChannelSpec(disparity,flowx|flowy)> <ChannelSpec(r|g|b|disparity,r|flowy)>
Example
>>> from kwcoco.channel_spec import * >>> self = ChannelSpec('a|b,c|d') >>> new = self - {'a', 'b'} >>> len(new.sizes()) == 1 >>> empty = new - 'c|d' >>> assert empty.numel() == 0
- intersection(other)[source]¶
Set difference. Remove all instances of other channels from this set of channels.
Example
>>> from kwcoco.channel_spec import * >>> self = ChannelSpec('rgb|disparity,flowx|r|flowy') >>> other = ChannelSpec('rgb') >>> new = self.intersection(other) >>> print(new) >>> print(new.numel()) >>> other = ChannelSpec('flowx') >>> new = self.intersection(other) >>> print(new) >>> print(new.numel()) <ChannelSpec(r|g|b,r)> 4 <ChannelSpec(flowx)> 1
- union(other)[source]¶
Union simply tags on a second channel spec onto this one. Duplicates are maintained.
Example
>>> from kwcoco.channel_spec import * >>> self = ChannelSpec('rgb|disparity,flowx|r|flowy') >>> other = ChannelSpec('rgb') >>> new = self.union(other) >>> print(new) >>> print(new.numel()) >>> other = ChannelSpec('flowx') >>> new = self.union(other) >>> print(new) >>> print(new.numel()) <ChannelSpec(r|g|b|disparity,flowx|r|flowy,r|g|b)> 10 <ChannelSpec(r|g|b|disparity,flowx|r|flowy,flowx)> 8
- sizes()[source]¶
Number of dimensions for each fused stream channel
IE: The EARLY-FUSED channel sizes
Example
>>> self = ChannelSpec('rgb|disparity,flowx|flowy,B:10') >>> self.normalize().concise() >>> self.sizes()
- encode(item, axis=0, mode=1)[source]¶
Given a dictionary containing preloaded components of the network inputs, build a concatenated (fused) network representations of each input stream.
- Parameters
item (Dict[str, Tensor]) – a batch item containing unfused parts. each key should be a single-stream (optionally early fused) channel key.
axis (int, default=0) – concatenation dimension
- Returns
mapping between input stream and its early fused tensor input.
- Return type
Dict[str, Tensor]
Example
>>> from kwcoco.channel_spec import * # NOQA >>> import numpy as np >>> dims = (4, 4) >>> item = { >>> 'rgb': np.random.rand(3, *dims), >>> 'disparity': np.random.rand(1, *dims), >>> 'flowx': np.random.rand(1, *dims), >>> 'flowy': np.random.rand(1, *dims), >>> } >>> # Complex Case >>> self = ChannelSpec('rgb,disparity,rgb|disparity|flowx|flowy,flowx|flowy') >>> fused = self.encode(item) >>> input_shapes = ub.map_vals(lambda x: x.shape, fused) >>> print('input_shapes = {}'.format(ub.repr2(input_shapes, nl=1))) >>> # Simpler case >>> self = ChannelSpec('rgb|disparity') >>> fused = self.encode(item) >>> input_shapes = ub.map_vals(lambda x: x.shape, fused) >>> print('input_shapes = {}'.format(ub.repr2(input_shapes, nl=1)))
Example
>>> # Case where we have to break up early fused data >>> import numpy as np >>> dims = (40, 40) >>> item = { >>> 'rgb|disparity': np.random.rand(4, *dims), >>> 'flowx': np.random.rand(1, *dims), >>> 'flowy': np.random.rand(1, *dims), >>> } >>> # Complex Case >>> self = ChannelSpec('rgb,disparity,rgb|disparity,rgb|disparity|flowx|flowy,flowx|flowy,flowx,disparity') >>> inputs = self.encode(item) >>> input_shapes = ub.map_vals(lambda x: x.shape, inputs) >>> print('input_shapes = {}'.format(ub.repr2(input_shapes, nl=1)))
>>> # xdoctest: +REQUIRES(--bench) >>> #self = ChannelSpec('rgb|disparity,flowx|flowy') >>> import timerit >>> ti = timerit.Timerit(100, bestof=10, verbose=2) >>> for timer in ti.reset('mode=simple'): >>> with timer: >>> inputs = self.encode(item, mode=0) >>> for timer in ti.reset('mode=minimize-concat'): >>> with timer: >>> inputs = self.encode(item, mode=1)
- decode(inputs, axis=1)[source]¶
break an early fused item into its components
- Parameters
inputs (Dict[str, Tensor]) – dictionary of components
axis (int, default=1) – channel dimension
Example
>>> from kwcoco.channel_spec import * # NOQA >>> import numpy as np >>> dims = (4, 4) >>> item_components = { >>> 'rgb': np.random.rand(3, *dims), >>> 'ir': np.random.rand(1, *dims), >>> } >>> self = ChannelSpec('rgb|ir') >>> item_encoded = self.encode(item_components) >>> batch = {k: np.concatenate([v[None, :], v[None, :]], axis=0) ... for k, v in item_encoded.items()} >>> components = self.decode(batch)
Example
>>> # xdoctest: +REQUIRES(module:netharn, module:torch) >>> import torch >>> import numpy as np >>> dims = (4, 4) >>> components = { >>> 'rgb': np.random.rand(3, *dims), >>> 'ir': np.random.rand(1, *dims), >>> } >>> components = ub.map_vals(torch.from_numpy, components) >>> self = ChannelSpec('rgb|ir') >>> encoded = self.encode(components) >>> from netharn.data import data_containers >>> item = {k: data_containers.ItemContainer(v, stack=True) >>> for k, v in encoded.items()} >>> batch = data_containers.container_collate([item, item]) >>> components = self.decode(batch)
- component_indices(axis=2)[source]¶
Look up component indices within fused streams
Example
>>> dims = (4, 4) >>> inputs = ['flowx', 'flowy', 'disparity'] >>> self = ChannelSpec('disparity,flowx|flowy') >>> component_indices = self.component_indices() >>> print('component_indices = {}'.format(ub.repr2(component_indices, nl=1))) component_indices = { 'disparity': ('disparity', (slice(None, None, None), slice(None, None, None), slice(0, 1, None))), 'flowx': ('flowx|flowy', (slice(None, None, None), slice(None, None, None), slice(0, 1, None))), 'flowy': ('flowx|flowy', (slice(None, None, None), slice(None, None, None), slice(1, 2, None))), }
- class kwcoco.CocoDataset(data=None, tag=None, bundle_dpath=None, img_root=None, fname=None, autobuild=True)[source]¶
Bases:
AbstractCocoDataset
,MixinCocoAddRemove
,MixinCocoStats
,MixinCocoObjects
,MixinCocoDraw
,MixinCocoAccessors
,MixinCocoExtras
,MixinCocoIndex
,MixinCocoDepricate
,NiceRepr
The main coco dataset class with a json dataset backend.
- Variables
dataset (Dict) – raw json data structure. This is the base dictionary that contains {‘annotations’: List, ‘images’: List, ‘categories’: List}
index (CocoIndex) – an efficient lookup index into the coco data structure. The index defines its own attributes like
anns
,cats
,imgs
,gid_to_aids
,file_name_to_img
, etc. SeeCocoIndex
for more details on which attributes are available.fpath (PathLike | None) – if known, this stores the filepath the dataset was loaded from
tag (str) – A tag indicating the name of the dataset.
bundle_dpath (PathLike | None) – If known, this is the root path that all image file names are relative to. This can also be manually overwritten by the user.
hashid (str | None) – If computed, this will be a hash uniquely identifing the dataset. To ensure this is computed see
kwcoco.coco_dataset.MixinCocoExtras._build_hashid()
.
References
http://cocodataset.org/#format http://cocodataset.org/#download
CommandLine
python -m kwcoco.coco_dataset CocoDataset --show
Example
>>> from kwcoco.coco_dataset import demo_coco_data >>> import kwcoco >>> import ubelt as ub >>> # Returns a coco json structure >>> dataset = demo_coco_data() >>> # Pass the coco json structure to the API >>> self = kwcoco.CocoDataset(dataset, tag='demo') >>> # Now you can access the data using the index and helper methods >>> # >>> # Start by looking up an image by it's COCO id. >>> image_id = 1 >>> img = self.index.imgs[image_id] >>> print(ub.repr2(img, nl=1, sort=1)) { 'file_name': 'astro.png', 'id': 1, 'url': 'https://i.imgur.com/KXhKM72.png', } >>> # >>> # Use the (gid_to_aids) index to lookup annotations in the iamge >>> annotation_id = sorted(self.index.gid_to_aids[image_id])[0] >>> ann = self.index.anns[annotation_id] >>> print(ub.repr2(ub.dict_diff(ann, {'segmentation'}), nl=1)) { 'bbox': [10, 10, 360, 490], 'category_id': 1, 'id': 1, 'image_id': 1, 'keypoints': [247, 101, 2, 202, 100, 2], } >>> # >>> # Use annotation category id to look up that information >>> category_id = ann['category_id'] >>> cat = self.index.cats[category_id] >>> print('cat = {}'.format(ub.repr2(cat, nl=1, sort=1))) cat = { 'id': 1, 'name': 'astronaut', 'supercategory': 'human', } >>> # >>> # Now play with some helper functions, like extended statistics >>> extended_stats = self.extended_stats() >>> # xdoctest: +IGNORE_WANT >>> print('extended_stats = {}'.format(ub.repr2(extended_stats, nl=1, precision=2, sort=1))) extended_stats = { 'annots_per_img': {'mean': 3.67, 'std': 3.86, 'min': 0.00, 'max': 9.00, 'nMin': 1, 'nMax': 1, 'shape': (3,)}, 'imgs_per_cat': {'mean': 0.88, 'std': 0.60, 'min': 0.00, 'max': 2.00, 'nMin': 2, 'nMax': 1, 'shape': (8,)}, 'cats_per_img': {'mean': 2.33, 'std': 2.05, 'min': 0.00, 'max': 5.00, 'nMin': 1, 'nMax': 1, 'shape': (3,)}, 'annots_per_cat': {'mean': 1.38, 'std': 1.49, 'min': 0.00, 'max': 5.00, 'nMin': 2, 'nMax': 1, 'shape': (8,)}, 'imgs_per_video': {'empty_list': True}, } >>> # You can "draw" a raster of the annotated image with cv2 >>> canvas = self.draw_image(2) >>> # Or if you have matplotlib you can "show" the image with mpl objects >>> # xdoctest: +REQUIRES(--show) >>> from matplotlib import pyplot as plt >>> fig = plt.figure() >>> ax1 = fig.add_subplot(1, 2, 1) >>> self.show_image(gid=2) >>> ax2 = fig.add_subplot(1, 2, 2) >>> ax2.imshow(canvas) >>> ax1.set_title('show with matplotlib') >>> ax2.set_title('draw with cv2') >>> plt.show()
- property fpath¶
In the future we will deprecate img_root for bundle_dpath
- classmethod from_data(data, bundle_dpath=None, img_root=None)[source]¶
Constructor from a json dictionary
- classmethod from_image_paths(gpaths, bundle_dpath=None, img_root=None)[source]¶
Constructor from a list of images paths.
This is a convinience method.
- Parameters
gpaths (List[str]) – list of image paths
Example
>>> coco_dset = CocoDataset.from_image_paths(['a.png', 'b.png']) >>> assert coco_dset.n_images == 2
- classmethod from_coco_paths(fpaths, max_workers=0, verbose=1, mode='thread', union='try')[source]¶
Constructor from multiple coco file paths.
Loads multiple coco datasets and unions the result
Note
if the union operation fails, the list of individually loaded files is returned instead.
- Parameters
fpaths (List[str]) – list of paths to multiple coco files to be loaded and unioned.
max_workers (int, default=0) – number of worker threads / processes
verbose (int) – verbosity level
mode (str) – thread, process, or serial
union (str | bool, default=’try’) – If True, unions the result datasets after loading. If False, just returns the result list. If ‘try’, then try to preform the union, but return the result list if it fails.
- copy()[source]¶
Deep copies this object
Example
>>> from kwcoco.coco_dataset import * >>> self = CocoDataset.demo() >>> new = self.copy() >>> assert new.imgs[1] is new.dataset['images'][0] >>> assert new.imgs[1] == self.dataset['images'][0] >>> assert new.imgs[1] is not self.dataset['images'][0]
- dumps(indent=None, newlines=False)[source]¶
Writes the dataset out to the json format
- Parameters
newlines (bool) – if True, each annotation, image, category gets its own line
Note
- Using newlines=True is similar to:
print(ub.repr2(dset.dataset, nl=2, trailsep=False)) However, the above may not output valid json if it contains ndarrays.
Example
>>> from kwcoco.coco_dataset import * >>> self = CocoDataset.demo() >>> text = self.dumps(newlines=True) >>> print(text) >>> self2 = CocoDataset(json.loads(text), tag='demo2') >>> assert self2.dataset == self.dataset >>> assert self2.dataset is not self.dataset
>>> text = self.dumps(newlines=True) >>> print(text) >>> self2 = CocoDataset(json.loads(text), tag='demo2') >>> assert self2.dataset == self.dataset >>> assert self2.dataset is not self.dataset
Example
>>> from kwcoco.coco_dataset import * >>> self = CocoDataset.coerce('vidshapes1-msi-multisensor', verbose=3) >>> self.remove_annotations(self.annots()) >>> text = self.dumps(newlines=True, indent=' ') >>> print(text)
- dump(file, indent=None, newlines=False, temp_file=True)[source]¶
Writes the dataset out to the json format
- Parameters
file (PathLike | IO) – Where to write the data. Can either be a path to a file or an open file pointer / stream.
newlines (bool) – if True, each annotation, image, category gets its own line.
temp_file (bool | str, default=True) – Argument to
safer.open()
. Ignored iffile
is not a PathLike object.
Example
>>> import tempfile >>> from kwcoco.coco_dataset import * >>> self = CocoDataset.demo() >>> file = tempfile.NamedTemporaryFile('w') >>> self.dump(file) >>> file.seek(0) >>> text = open(file.name, 'r').read() >>> print(text) >>> file.seek(0) >>> dataset = json.load(open(file.name, 'r')) >>> self2 = CocoDataset(dataset, tag='demo2') >>> assert self2.dataset == self.dataset >>> assert self2.dataset is not self.dataset
>>> file = tempfile.NamedTemporaryFile('w') >>> self.dump(file, newlines=True) >>> file.seek(0) >>> text = open(file.name, 'r').read() >>> print(text) >>> file.seek(0) >>> dataset = json.load(open(file.name, 'r')) >>> self2 = CocoDataset(dataset, tag='demo2') >>> assert self2.dataset == self.dataset >>> assert self2.dataset is not self.dataset
- union(*, disjoint_tracks=True, **kwargs)[source]¶
Merges multiple
CocoDataset
items into one. Names and associations are retained, but ids may be different.- Parameters
*others – a series of CocoDatasets that we will merge. Note, if called as an instance method, the “self” instance will be the first item in the “others” list. But if called like a classmethod, “others” will be empty by default.
disjoint_tracks (bool, default=True) – if True, we will assume track-ids are disjoint and if two datasets share the same track-id, we will disambiguate them. Otherwise they will be copied over as-is.
**kwargs – constructor options for the new merged CocoDataset
- Returns
a new merged coco dataset
- Return type
CommandLine
xdoctest -m kwcoco.coco_dataset CocoDataset.union
Example
>>> # Test union works with different keypoint categories >>> dset1 = CocoDataset.demo('shapes1') >>> dset2 = CocoDataset.demo('shapes2') >>> dset1.remove_keypoint_categories(['bot_tip', 'mid_tip', 'right_eye']) >>> dset2.remove_keypoint_categories(['top_tip', 'left_eye']) >>> dset_12a = CocoDataset.union(dset1, dset2) >>> dset_12b = dset1.union(dset2) >>> dset_21 = dset2.union(dset1) >>> def add_hist(h1, h2): >>> return {k: h1.get(k, 0) + h2.get(k, 0) for k in set(h1) | set(h2)} >>> kpfreq1 = dset1.keypoint_annotation_frequency() >>> kpfreq2 = dset2.keypoint_annotation_frequency() >>> kpfreq_want = add_hist(kpfreq1, kpfreq2) >>> kpfreq_got1 = dset_12a.keypoint_annotation_frequency() >>> kpfreq_got2 = dset_12b.keypoint_annotation_frequency() >>> assert kpfreq_want == kpfreq_got1 >>> assert kpfreq_want == kpfreq_got2
>>> # Test disjoint gid datasets >>> import kwcoco >>> dset1 = kwcoco.CocoDataset.demo('shapes3') >>> for new_gid, img in enumerate(dset1.dataset['images'], start=10): >>> for aid in dset1.gid_to_aids[img['id']]: >>> dset1.anns[aid]['image_id'] = new_gid >>> img['id'] = new_gid >>> dset1.index.clear() >>> dset1._build_index() >>> # ------ >>> dset2 = kwcoco.CocoDataset.demo('shapes2') >>> for new_gid, img in enumerate(dset2.dataset['images'], start=100): >>> for aid in dset2.gid_to_aids[img['id']]: >>> dset2.anns[aid]['image_id'] = new_gid >>> img['id'] = new_gid >>> dset1.index.clear() >>> dset2._build_index() >>> others = [dset1, dset2] >>> merged = kwcoco.CocoDataset.union(*others) >>> print('merged = {!r}'.format(merged)) >>> print('merged.imgs = {}'.format(ub.repr2(merged.imgs, nl=1))) >>> assert set(merged.imgs) & set([10, 11, 12, 100, 101]) == set(merged.imgs)
>>> # Test data is not preserved >>> dset2 = kwcoco.CocoDataset.demo('shapes2') >>> dset1 = kwcoco.CocoDataset.demo('shapes3') >>> others = (dset1, dset2) >>> cls = self = kwcoco.CocoDataset >>> merged = cls.union(*others) >>> print('merged = {!r}'.format(merged)) >>> print('merged.imgs = {}'.format(ub.repr2(merged.imgs, nl=1))) >>> assert set(merged.imgs) & set([1, 2, 3, 4, 5]) == set(merged.imgs)
>>> # Test track-ids are mapped correctly >>> dset1 = kwcoco.CocoDataset.demo('vidshapes1') >>> dset2 = kwcoco.CocoDataset.demo('vidshapes2') >>> dset3 = kwcoco.CocoDataset.demo('vidshapes3') >>> others = (dset1, dset2, dset3) >>> for dset in others: >>> [a.pop('segmentation', None) for a in dset.index.anns.values()] >>> [a.pop('keypoints', None) for a in dset.index.anns.values()] >>> cls = self = kwcoco.CocoDataset >>> merged = cls.union(*others, disjoint_tracks=1) >>> print('dset1.anns = {}'.format(ub.repr2(dset1.anns, nl=1))) >>> print('dset2.anns = {}'.format(ub.repr2(dset2.anns, nl=1))) >>> print('dset3.anns = {}'.format(ub.repr2(dset3.anns, nl=1))) >>> print('merged.anns = {}'.format(ub.repr2(merged.anns, nl=1)))
Example
>>> import kwcoco >>> # Test empty union >>> empty_union = kwcoco.CocoDataset.union() >>> assert len(empty_union.index.imgs) == 0
Todo
[ ] are supercategories broken?
[ ] reuse image ids where possible
[ ] reuse annotation / category ids where possible
[X] handle case where no inputs are given
[x] disambiguate track-ids
[x] disambiguate video-ids
- subset(gids, copy=False, autobuild=True)[source]¶
Return a subset of the larger coco dataset by specifying which images to port. All annotations in those images will be taken.
- Parameters
gids (List[int]) – image-ids to copy into a new dataset
copy (bool, default=False) – if True, makes a deep copy of all nested attributes, otherwise makes a shallow copy.
autobuild (bool, default=True) – if True will automatically build the fast lookup index.
Example
>>> self = CocoDataset.demo() >>> gids = [1, 3] >>> sub_dset = self.subset(gids) >>> assert len(self.index.gid_to_aids) == 3 >>> assert len(sub_dset.gid_to_aids) == 2
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('vidshapes2') >>> gids = [1, 2] >>> sub_dset = self.subset(gids, copy=True) >>> assert len(sub_dset.index.videos) == 1 >>> assert len(self.index.videos) == 2
Example
>>> self = CocoDataset.demo() >>> sub1 = self.subset([1]) >>> sub2 = self.subset([2]) >>> sub3 = self.subset([3]) >>> others = [sub1, sub2, sub3] >>> rejoined = CocoDataset.union(*others) >>> assert len(sub1.anns) == 9 >>> assert len(sub2.anns) == 2 >>> assert len(sub3.anns) == 0 >>> assert rejoined.basic_stats() == self.basic_stats()
- view_sql(force_rewrite=False, memory=False)[source]¶
Create a cached SQL interface to this dataset suitable for large scale multiprocessing use cases.
- Parameters
force_rewrite (bool, default=False) – if True, forces an update to any existing cache file on disk
memory (bool, default=False) – if True, the database is constructed in memory.
Note
This view cache is experimental and currently depends on the timestamp of the file pointed to by
self.fpath
. In other words dont use this on in-memory datasets.
- class kwcoco.CocoImage(img, dset=None)[source]¶
Bases:
NiceRepr
An object-oriented representation of a coco image.
It provides helper methods that are specific to a single image.
This operates directly on a single coco image dictionary, but it can optionally be connected to a parent dataset, which allows it to use CocoDataset methods to query about relationships and resolve pointers.
This is different than the Images class in coco_object1d, which is just a vectorized interface to multiple objects.
Example
>>> import kwcoco >>> dset1 = kwcoco.CocoDataset.demo('shapes8') >>> dset2 = kwcoco.CocoDataset.demo('vidshapes8-multispectral')
>>> self = CocoImage(dset1.imgs[1], dset1) >>> print('self = {!r}'.format(self)) >>> print('self.channels = {}'.format(ub.repr2(self.channels, nl=1)))
>>> self = CocoImage(dset2.imgs[1], dset2) >>> print('self.channels = {}'.format(ub.repr2(self.channels, nl=1))) >>> self.primary_asset()
- property bundle_dpath¶
- property video¶
Helper to grab the video for this image if it exists
- detach()[source]¶
Removes references to the underlying coco dataset, but keeps special information such that it wont be needed.
- get(key, default=NoParam)[source]¶
Proxy getter attribute for underlying self.img dictionary
Example
>>> import pytest >>> # without extra populated >>> import kwcoco >>> self = kwcoco.CocoImage({'foo': 1}) >>> assert self.get('foo') == 1 >>> assert self.get('foo', None) == 1 >>> # with extra populated >>> self = kwcoco.CocoImage({'extra': {'foo': 1}}) >>> assert self.get('foo') == 1 >>> assert self.get('foo', None) == 1 >>> # without extra empty >>> self = kwcoco.CocoImage({}) >>> with pytest.raises(KeyError): >>> self.get('foo') >>> assert self.get('foo', None) is None >>> # with extra empty >>> self = kwcoco.CocoImage({'extra': {'bar': 1}}) >>> with pytest.raises(KeyError): >>> self.get('foo') >>> assert self.get('foo', None) is None
- property channels¶
- property num_channels¶
- property dsize¶
- primary_asset(requires=None)[source]¶
Compute a “main” image asset.
Notes
Uses a heuristic.
First, try to find the auxiliary image that has with the smallest
distortion to the base image (if known via warp_aux_to_img)
Second, break ties by using the largest image if w / h is known
Last, if previous information not available use the first auxiliary image.
- Parameters
requires (List[str]) – list of attribute that must be non-None to consider an object as the primary one.
Todo
[ ] Add in primary heuristics
Example
>>> import kwarray >>> from kwcoco.coco_image import * # NOQA >>> rng = kwarray.ensure_rng(0) >>> def random_auxiliary(name, w=None, h=None): >>> return {'file_name': name, 'width': w, 'height': h} >>> self = CocoImage({ >>> 'auxiliary': [ >>> random_auxiliary('1'), >>> random_auxiliary('2'), >>> random_auxiliary('3'), >>> ] >>> }) >>> assert self.primary_asset()['file_name'] == '1' >>> self = CocoImage({ >>> 'auxiliary': [ >>> random_auxiliary('1'), >>> random_auxiliary('2', 3, 3), >>> random_auxiliary('3'), >>> ] >>> }) >>> assert self.primary_asset()['file_name'] == '2'
- iter_image_filepaths(with_bundle=True)[source]¶
Could rename to iter_asset_filepaths
- Parameters
with_bundle (bool) – If True, prepends the bundle dpath to fully specify the path. Otherwise, just returns the registered string in the file_name attribute of each asset. Defaults to True.
- iter_asset_objs()[source]¶
Iterate through base + auxiliary dicts that have file paths
- Yields
dict – an image or auxiliary dictionary
- find_asset_obj(channels)[source]¶
Find the asset dictionary with the specified channels
Example
>>> import kwcoco >>> coco_img = kwcoco.CocoImage({'width': 128, 'height': 128}) >>> coco_img.add_auxiliary_item( >>> 'rgb.png', channels='red|green|blue', width=32, height=32) >>> assert coco_img.find_asset_obj('red') is not None >>> assert coco_img.find_asset_obj('green') is not None >>> assert coco_img.find_asset_obj('blue') is not None >>> assert coco_img.find_asset_obj('red|blue') is not None >>> assert coco_img.find_asset_obj('red|green|blue') is not None >>> assert coco_img.find_asset_obj('red|green|blue') is not None >>> assert coco_img.find_asset_obj('black') is None >>> assert coco_img.find_asset_obj('r') is None
Example
>>> # Test with concise channel code >>> import kwcoco >>> coco_img = kwcoco.CocoImage({'width': 128, 'height': 128}) >>> coco_img.add_auxiliary_item( >>> 'msi.png', channels='foo.0:128', width=32, height=32) >>> assert coco_img.find_asset_obj('foo') is None >>> assert coco_img.find_asset_obj('foo.3') is not None >>> assert coco_img.find_asset_obj('foo.3:5') is not None >>> assert coco_img.find_asset_obj('foo.3000') is None
- add_auxiliary_item(file_name=None, channels=None, imdata=None, warp_aux_to_img=None, width=None, height=None, imwrite=False)[source]¶
Adds an auxiliary / asset item to the image dictionary.
This operation can be done purely in-memory (the default), or the image data can be written to a file on disk (via the imwrite=True flag).
- Parameters
file_name (str | None) – The name of the file relative to the bundle directory. If unspecified, imdata must be given.
channels (str | kwcoco.FusedChannelSpec) – The channel code indicating what each of the bands represents. These channels should be disjoint wrt to the existing data in this image (this is not checked).
imdata (ndarray | None) – The underlying image data this auxiliary item represents. If unspecified, it is assumed file_name points to a path on disk that will eventually exist. If imdata, file_name, and the special imwrite=True flag are specified, this function will write the data to disk.
warp_aux_to_img (kwimage.Affine) – The transformation from this auxiliary space to image space. If unspecified, assumes this item is related to image space by only a scale factor.
width (int) – Width of the data in auxiliary space (inferred if unspecified)
height (int) – Height of the data in auxiliary space (inferred if unspecified)
imwrite (bool) – If specified, both imdata and file_name must be specified, and this will write the data to disk. Note: it it recommended that you simply call imwrite yourself before or after calling this function. This lets you better control imwrite parameters.
Todo
[ ] Allow imwrite to specify an executor that is used to
return a Future so the imwrite call does not block.
Example
>>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> coco_img = dset.coco_image(1) >>> imdata = np.random.rand(32, 32, 5) >>> channels = kwcoco.FusedChannelSpec.coerce('Aux:5') >>> coco_img.add_auxiliary_item(imdata=imdata, channels=channels)
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset() >>> gid = dset.add_image(name='my_image_name', width=200, height=200) >>> coco_img = dset.coco_image(gid) >>> coco_img.add_auxiliary_item('path/img1_B0.tif', channels='B0', width=200, height=200) >>> coco_img.add_auxiliary_item('path/img1_B1.tif', channels='B1', width=200, height=200) >>> coco_img.add_auxiliary_item('path/img1_B2.tif', channels='B2', width=200, height=200) >>> coco_img.add_auxiliary_item('path/img1_TCI.tif', channels='r|g|b', width=200, height=200)
- add_asset(file_name=None, channels=None, imdata=None, warp_aux_to_img=None, width=None, height=None, imwrite=False)¶
Adds an auxiliary / asset item to the image dictionary.
This operation can be done purely in-memory (the default), or the image data can be written to a file on disk (via the imwrite=True flag).
- Parameters
file_name (str | None) – The name of the file relative to the bundle directory. If unspecified, imdata must be given.
channels (str | kwcoco.FusedChannelSpec) – The channel code indicating what each of the bands represents. These channels should be disjoint wrt to the existing data in this image (this is not checked).
imdata (ndarray | None) – The underlying image data this auxiliary item represents. If unspecified, it is assumed file_name points to a path on disk that will eventually exist. If imdata, file_name, and the special imwrite=True flag are specified, this function will write the data to disk.
warp_aux_to_img (kwimage.Affine) – The transformation from this auxiliary space to image space. If unspecified, assumes this item is related to image space by only a scale factor.
width (int) – Width of the data in auxiliary space (inferred if unspecified)
height (int) – Height of the data in auxiliary space (inferred if unspecified)
imwrite (bool) – If specified, both imdata and file_name must be specified, and this will write the data to disk. Note: it it recommended that you simply call imwrite yourself before or after calling this function. This lets you better control imwrite parameters.
Todo
[ ] Allow imwrite to specify an executor that is used to
return a Future so the imwrite call does not block.
Example
>>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> coco_img = dset.coco_image(1) >>> imdata = np.random.rand(32, 32, 5) >>> channels = kwcoco.FusedChannelSpec.coerce('Aux:5') >>> coco_img.add_auxiliary_item(imdata=imdata, channels=channels)
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset() >>> gid = dset.add_image(name='my_image_name', width=200, height=200) >>> coco_img = dset.coco_image(gid) >>> coco_img.add_auxiliary_item('path/img1_B0.tif', channels='B0', width=200, height=200) >>> coco_img.add_auxiliary_item('path/img1_B1.tif', channels='B1', width=200, height=200) >>> coco_img.add_auxiliary_item('path/img1_B2.tif', channels='B2', width=200, height=200) >>> coco_img.add_auxiliary_item('path/img1_TCI.tif', channels='r|g|b', width=200, height=200)
- delay(channels=None, space='image', bundle_dpath=None, interpolation='linear', antialias=True, nodata_method=None, jagged=False, mode=1)[source]¶
Perform a delayed load on the data in this image.
The delayed load can load a subset of channels, and perform lazy warping operations. If the underlying data is in a tiled format this can reduce the amount of disk IO needed to read the data if only a small crop or lower resolution view of the data is needed.
- Note:
This method is experimental and relies on the delayed load proof-of-concept.
- Args:
gid (int): image id to load
- channels (kwcoco.FusedChannelSpec): specific channels to load.
if unspecified, all channels are loaded.
- space (str):
can either be “image” for loading in image space, or “video” for loading in video space.
- jagged (bool):
if True, then does not concatenate the channels and instead returns a delayed jagged concatenate.
- TODO:
- [X] Currently can only take all or none of the channels from each
base-image / auxiliary dict. For instance if the main image is r|g|b you can’t just select g|b at the moment.
- [X] The order of the channels in the delayed load should
match the requested channel order.
- wc
[X] TODO: add nans to bands that don’t exist or throw an error
- [ ] This function could stand to have a better name. Maybe imread
with a delayed=True flag? Or maybe just delayed_load?
- Example:
>>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> gid = 1 >>> # >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> self = CocoImage(dset.imgs[gid], dset) >>> delayed = self.delay() >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> # >>> dset = kwcoco.CocoDataset.demo('shapes8') >>> delayed = dset.coco_image(gid).delay() >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize()))
>>> crop = delayed.crop((slice(0, 3), slice(0, 3))) >>> crop.finalize()
>>> # TODO: should only select the "red" channel >>> dset = kwcoco.CocoDataset.demo('shapes8') >>> delayed = CocoImage(dset.imgs[gid], dset).delay(channels='r')
>>> import kwcoco >>> gid = 1 >>> # >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> delayed = dset.coco_image(gid).delay(channels='B1|B2', space='image') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> delayed = dset.coco_image(gid).delay(channels='B1|B2|B11', space='image') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> delayed = dset.coco_image(gid).delay(channels='B8|B1', space='video') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize()))
>>> delayed = dset.coco_image(gid).delay(channels='B8|foo|bar|B1', space='video') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize()))
- Example:
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> coco_img = dset.coco_image(1) >>> # Test case where nothing is registered in the dataset >>> delayed = coco_img.delay() >>> final = delayed.finalize() >>> assert final.shape == (512, 512, 3)
>>> delayed = coco_img.delay(mode=1) >>> final = delayed.finalize() >>> print('final.shape = {}'.format(ub.repr2(final.shape, nl=1))) >>> assert final.shape == (512, 512, 3)
- Example:
>>> # Test that delay works when imdata is stored in the image >>> # dictionary itself. >>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> coco_img = dset.coco_image(1) >>> imdata = np.random.rand(6, 6, 5) >>> imdata[:] = np.arange(5)[None, None, :] >>> channels = kwcoco.FusedChannelSpec.coerce('Aux:5') >>> coco_img.add_auxiliary_item(imdata=imdata, channels=channels) >>> delayed = coco_img.delay(channels='B1|Aux:2:4', mode=1) >>> final = delayed.finalize()
- Example:
>>> # Test delay when loading in asset space >>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-msi-multisensor') >>> coco_img = dset.coco_image(1) >>> stream1 = coco_img.channels.streams()[0] >>> stream2 = coco_img.channels.streams()[1] >>> aux_delayed = coco_img.delay(stream1, space='asset') >>> img_delayed = coco_img.delay(stream1, space='image') >>> vid_delayed = coco_img.delay(stream1, space='video') >>> # >>> aux_imdata = aux_delayed.as_xarray().finalize() >>> img_imdata = img_delayed.as_xarray().finalize() >>> assert aux_imdata.shape != img_imdata.shape >>> # Cannot load multiple asset items at the same time in >>> # asset space >>> import pytest >>> fused_channels = stream1 | stream2 >>> with pytest.raises(kwcoco.exceptions.CoordinateCompatibilityError): >>> aux_delayed2 = coco_img.delay(fused_channels, space='asset') >>> # But we can if we allow jagged-ness >>> aux_delayed3 = coco_img.delay(fused_channels, space='asset', jagged=True) >>> aux_delayed3.finalize()
- valid_region¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- property warp_vid_from_img¶
- property warp_img_from_vid¶
- class kwcoco.FusedChannelSpec(parsed, _is_normalized=False)[source]¶
Bases:
BaseChannelSpec
A specific type of channel spec with only one early fused stream.
The channels in this stream are non-communative
Behaves like a list of atomic-channel codes (which may represent more than 1 channel), normalized codes always represent exactly 1 channel.
Note
This class name and API is in flux and subject to change.
Todo
A special code indicating a name and some number of bands that that names contains, this would primarilly be used for large numbers of channels produced by a network. Like:
resnet_d35d060_L5:512
or
resnet_d35d060_L5[:512]
might refer to a very specific (hashed) set of resnet parameters with 512 bands
maybe we can do something slicly like:
resnet_d35d060_L5[A:B] resnet_d35d060_L5:A:B
Do we want to “just store the code” and allow for parsing later?
Or do we want to ensure the serialization is parsed before we construct the data structure?
Example
>>> from kwcoco.channel_spec import * # NOQA >>> import pickle >>> self = FusedChannelSpec.coerce(3) >>> recon = pickle.loads(pickle.dumps(self)) >>> self = ChannelSpec.coerce('a|b,c|d') >>> recon = pickle.loads(pickle.dumps(self))
- property spec¶
- unique¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- classmethod coerce(data)[source]¶
Example
>>> from kwcoco.channel_spec import * # NOQA >>> FusedChannelSpec.coerce(['a', 'b', 'c']) >>> FusedChannelSpec.coerce('a|b|c') >>> FusedChannelSpec.coerce(3) >>> FusedChannelSpec.coerce(FusedChannelSpec(['a'])) >>> assert FusedChannelSpec.coerce('').numel() == 0
- concise()[source]¶
Shorted the channel spec by de-normaliz slice syntax
- Returns
concise spec
- Return type
Example
>>> from kwcoco.channel_spec import * # NOQA >>> self = FusedChannelSpec.coerce( >>> 'b|a|a.0|a.1|a.2|a.5|c|a.8|a.9|b.0:3|c.0') >>> short = self.concise() >>> long = short.normalize() >>> numels = [c.numel() for c in [self, short, long]] >>> print('self.spec = {!r}'.format(self.spec)) >>> print('short.spec = {!r}'.format(short.spec)) >>> print('long.spec = {!r}'.format(long.spec)) >>> print('numels = {!r}'.format(numels)) self.spec = 'b|a|a.0|a.1|a.2|a.5|c|a.8|a.9|b.0:3|c.0' short.spec = 'b|a|a:3|a.5|c|a.8:10|b:3|c.0' long.spec = 'b|a|a.0|a.1|a.2|a.5|c|a.8|a.9|b.0|b.1|b.2|c.0' numels = [13, 13, 13] >>> assert long.concise().spec == short.spec
- normalize()[source]¶
Replace aliases with explicit single-band-per-code specs
- Returns
normalize spec
- Return type
Example
>>> from kwcoco.channel_spec import * # NOQA >>> self = FusedChannelSpec.coerce('b1|b2|b3|rgb') >>> normed = self.normalize() >>> print('self = {}'.format(self)) >>> print('normed = {}'.format(normed)) self = <FusedChannelSpec(b1|b2|b3|rgb)> normed = <FusedChannelSpec(b1|b2|b3|r|g|b)> >>> self = FusedChannelSpec.coerce('B:1:11') >>> normed = self.normalize() >>> print('self = {}'.format(self)) >>> print('normed = {}'.format(normed)) self = <FusedChannelSpec(B:1:11)> normed = <FusedChannelSpec(B.1|B.2|B.3|B.4|B.5|B.6|B.7|B.8|B.9|B.10)> >>> self = FusedChannelSpec.coerce('B.1:11') >>> normed = self.normalize() >>> print('self = {}'.format(self)) >>> print('normed = {}'.format(normed)) self = <FusedChannelSpec(B.1:11)> normed = <FusedChannelSpec(B.1|B.2|B.3|B.4|B.5|B.6|B.7|B.8|B.9|B.10)>
- sizes()[source]¶
Returns a list indicating the size of each atomic code
- Returns
List[int]
Example
>>> from kwcoco.channel_spec import * # NOQA >>> self = FusedChannelSpec.coerce('b1|Z:3|b2|b3|rgb') >>> self.sizes() [1, 3, 1, 1, 3] >>> assert(FusedChannelSpec.parse('a.0').numel()) == 1 >>> assert(FusedChannelSpec.parse('a:0').numel()) == 0 >>> assert(FusedChannelSpec.parse('a:1').numel()) == 1
- as_list¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- as_oset¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- as_set¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- to_set¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- to_oset¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- to_list¶
memoization decorator for a method that respects args and kwargs
References
- ActiveState_Miller_2010
http://code.activestate.com/recipes/577452-a-memoize-decorator-for-instance-methods
Example
>>> import ubelt as ub >>> closure = {'a': 'b', 'c': 'd'} >>> incr = [0] >>> class Foo(object): >>> @memoize_method >>> def foo_memo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> def foo(self, key): >>> value = closure[key] >>> incr[0] += 1 >>> return value >>> self = Foo() >>> assert self.foo('a') == 'b' and self.foo('c') == 'd' >>> assert incr[0] == 2 >>> print('Call memoized version') >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> assert incr[0] == 4 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Counter should no longer increase') >>> assert incr[0] == 4 >>> print('Closure changes result without memoization') >>> closure = {'a': 0, 'c': 1} >>> assert self.foo('a') == 0 and self.foo('c') == 1 >>> assert incr[0] == 6 >>> assert self.foo_memo('a') == 'b' and self.foo_memo('c') == 'd' >>> print('Constructing a new object should get a new cache') >>> self2 = Foo() >>> self2.foo_memo('a') >>> assert incr[0] == 7 >>> self2.foo_memo('a') >>> assert incr[0] == 7
- as_path()[source]¶
Returns a string suitable for use in a path.
Note, this may no longer be a valid channel spec
- difference(other)[source]¶
Set difference
Example
>>> FCS = FusedChannelSpec.coerce >>> self = FCS('rgb|disparity|flowx|flowy') >>> other = FCS('r|b') >>> self.difference(other) >>> other = FCS('flowx') >>> self.difference(other) >>> FCS = FusedChannelSpec.coerce >>> assert len((FCS('a') - {'a'}).parsed) == 0 >>> assert len((FCS('a.0:3') - {'a.0'}).parsed) == 2
- intersection(other)[source]¶
Example
>>> FCS = FusedChannelSpec.coerce >>> self = FCS('rgb|disparity|flowx|flowy') >>> other = FCS('r|b|XX') >>> self.intersection(other)
- union(other)[source]¶
Example
>>> from kwcoco.channel_spec import * # NOQA >>> FCS = FusedChannelSpec.coerce >>> self = FCS('rgb|disparity|flowx|flowy') >>> other = FCS('r|b|XX') >>> self.union(other)
- component_indices(axis=2)[source]¶
Look up component indices within this stream
Example
>>> FCS = FusedChannelSpec.coerce >>> self = FCS('disparity|rgb|flowx|flowy') >>> component_indices = self.component_indices() >>> print('component_indices = {}'.format(ub.repr2(component_indices, nl=1))) component_indices = { 'disparity': (slice(...), slice(...), slice(0, 1, None)), 'flowx': (slice(...), slice(...), slice(4, 5, None)), 'flowy': (slice(...), slice(...), slice(5, 6, None)), 'rgb': (slice(...), slice(...), slice(1, 4, None)), }
- streams()[source]¶
Idempotence with
ChannelSpec.streams()
- fuse()[source]¶
Idempotence with
ChannelSpec.streams()