Welcome to kwcoco’s documentation!¶
If you are new, please see our getting started document: getting_started
Please also see information in the repo README, which contains similar but complementary information.
Documentation about higher level kwcoco concepts can be found here.
The Kitware COCO module defines a variant of the Microsoft COCO format, originally developed for the “collected images in context” object detection challenge. We are backwards compatible with the original module, but we also have improved implementations in several places, including segmentations, keypoints, annotation tracks, multi-spectral images, and videos (which represents a generic sequence of images).
A kwcoco file is a “manifest” that serves as a single reference that points to all images, categories, and annotations in a computer vision dataset. Thus, when applying an algorithm to a dataset, it is sufficient to have the algorithm take one dataset parameter: the path to the kwcoco file. Generally a kwcoco file will live in a “bundle” directory along with the data that it references, and paths in the kwcoco file will be relative to the location of the kwcoco file itself.
The main data structure in this model is largely based on the implementation in https://github.com/cocodataset/cocoapi It uses the same efficient core indexing data structures, but in our implementation the indexing can be optionally turned off, functions are silent by default (with the exception of long running processes, which optionally show progress by default). We support helper functions that add and remove images, categories, and annotations.
The kwcoco.CocoDataset
class is capable of dynamic addition and removal
of categories, images, and annotations. Has better support for keypoints and
segmentation formats than the original COCO format. Despite being written in
Python, this data structure is reasonably efficient.
>>> import kwcoco
>>> import json
>>> # Create demo data
>>> demo = kwcoco.CocoDataset.demo()
>>> # Reroot can switch between absolute / relative-paths
>>> demo.reroot(absolute=True)
>>> # could also use demo.dump / demo.dumps, but this is more explicit
>>> text = json.dumps(demo.dataset)
>>> with open('demo.json', 'w') as file:
>>> file.write(text)
>>> # Read from disk
>>> self = kwcoco.CocoDataset('demo.json')
>>> # Add data
>>> cid = self.add_category('Cat')
>>> gid = self.add_image('new-img.jpg')
>>> aid = self.add_annotation(image_id=gid, category_id=cid, bbox=[0, 0, 100, 100])
>>> # Remove data
>>> self.remove_annotations([aid])
>>> self.remove_images([gid])
>>> self.remove_categories([cid])
>>> # Look at data
>>> import ubelt as ub
>>> print(ub.urepr(self.basic_stats(), nl=1))
>>> print(ub.urepr(self.extended_stats(), nl=2))
>>> print(ub.urepr(self.boxsize_stats(), nl=3))
>>> print(ub.urepr(self.category_annotation_frequency()))
>>> # Inspect data
>>> # xdoctest: +REQUIRES(module:kwplot)
>>> import kwplot
>>> kwplot.autompl()
>>> self.show_image(gid=1)
>>> # Access single-item data via imgs, cats, anns
>>> cid = 1
>>> self.cats[cid]
{'id': 1, 'name': 'astronaut', 'supercategory': 'human'}
>>> gid = 1
>>> self.imgs[gid]
{'id': 1, 'file_name': '...astro.png', 'url': 'https://i.imgur.com/KXhKM72.png'}
>>> aid = 3
>>> self.anns[aid]
{'id': 3, 'image_id': 1, 'category_id': 3, 'line': [326, 369, 500, 500]}
>>> # Access multi-item data via the annots and images helper objects
>>> aids = self.index.gid_to_aids[2]
>>> annots = self.annots(aids)
>>> print('annots = {}'.format(ub.urepr(annots, nl=1, sv=1)))
annots = <Annots(num=2)>
>>> annots.lookup('category_id')
[6, 4]
>>> annots.lookup('bbox')
[[37, 6, 230, 240], [124, 96, 45, 18]]
>>> # built in conversions to efficient kwimage array DataStructures
>>> print(ub.urepr(annots.detections.data, sv=1))
{
'boxes': <Boxes(xywh,
array([[ 37., 6., 230., 240.],
[124., 96., 45., 18.]], dtype=float32))>,
'class_idxs': [5, 3],
'keypoints': <PointsList(n=2)>,
'segmentations': <PolygonList(n=2)>,
}
>>> gids = list(self.imgs.keys())
>>> images = self.images(gids)
>>> print('images = {}'.format(ub.urepr(images, nl=1, sv=1)))
images = <Images(num=3)>
>>> images.lookup('file_name')
['...astro.png', '...carl.png', '...stars.png']
>>> print('images.annots = {}'.format(images.annots))
images.annots = <AnnotGroups(n=3, m=3.7, s=3.9)>
>>> print('images.annots.cids = {!r}'.format(images.annots.cids))
images.annots.cids = [[1, 2, 3, 4, 5, 5, 5, 5, 5], [6, 4], []]
CocoDataset API¶
The following is a logical grouping of the public kwcoco.CocoDataset API attributes and methods. See the in-code documentation for further details.
CocoDataset classmethods (via MixinCocoExtras)¶
kwcoco.CocoDataset.coerce
- Attempt to transform the input into the intended CocoDataset.
kwcoco.CocoDataset.demo
- Create a toy coco dataset for testing and demo puposes
kwcoco.CocoDataset.random
- Creates a random CocoDataset according to distribution parameters
CocoDataset classmethods (via CocoDataset)¶
kwcoco.CocoDataset.from_coco_paths
- Constructor from multiple coco file paths.
kwcoco.CocoDataset.from_data
- Constructor from a json dictionary
kwcoco.CocoDataset.from_image_paths
- Constructor from a list of images paths.
CocoDataset slots¶
kwcoco.CocoDataset.index
- an efficient lookup index into the coco data structure. The index defines its own attributes likeanns
,cats
,imgs
,gid_to_aids
,file_name_to_img
, etc. SeeCocoIndex
for more details on which attributes are available.
kwcoco.CocoDataset.hashid
- If computed, this will be a hash uniquely identifing the dataset. To ensure this is computed seekwcoco.coco_dataset.MixinCocoExtras._build_hashid()
.
kwcoco.CocoDataset.hashid_parts
-
kwcoco.CocoDataset.tag
- A tag indicating the name of the dataset.
kwcoco.CocoDataset.dataset
- raw json data structure. This is the base dictionary that contains {‘annotations’: List, ‘images’: List, ‘categories’: List}
kwcoco.CocoDataset.bundle_dpath
- If known, this is the root path that all image file names are relative to. This can also be manually overwritten by the user.
kwcoco.CocoDataset.assets_dpath
-
kwcoco.CocoDataset.cache_dpath
-
CocoDataset properties¶
kwcoco.CocoDataset.anns
-
kwcoco.CocoDataset.cats
-
kwcoco.CocoDataset.cid_to_aids
-
kwcoco.CocoDataset.data_fpath
-
kwcoco.CocoDataset.data_root
-
kwcoco.CocoDataset.fpath
- if known, this stores the filepath the dataset was loaded from
kwcoco.CocoDataset.gid_to_aids
-
kwcoco.CocoDataset.img_root
-
kwcoco.CocoDataset.imgs
-
kwcoco.CocoDataset.n_annots
-
kwcoco.CocoDataset.n_cats
-
kwcoco.CocoDataset.n_images
-
kwcoco.CocoDataset.n_videos
-
kwcoco.CocoDataset.name_to_cat
-
CocoDataset methods (via MixinCocoAddRemove)¶
kwcoco.CocoDataset.add_annotation
- Add an annotation to the dataset (dynamically updates the index)
kwcoco.CocoDataset.add_annotations
- Faster less-safe multi-item alternative to add_annotation.
kwcoco.CocoDataset.add_category
- Adds a category
kwcoco.CocoDataset.add_image
- Add an image to the dataset (dynamically updates the index)
kwcoco.CocoDataset.add_images
- Faster less-safe multi-item alternative
kwcoco.CocoDataset.add_video
- Add a video to the dataset (dynamically updates the index)
kwcoco.CocoDataset.clear_annotations
- Removes all annotations (but not images and categories)
kwcoco.CocoDataset.clear_images
- Removes all images and annotations (but not categories)
kwcoco.CocoDataset.ensure_category
- Likeadd_category()
, but returns the existing category id if it already exists instead of failing. In this case all metadata is ignored.
kwcoco.CocoDataset.ensure_image
- Likeadd_image()
,, but returns the existing image id if it already exists instead of failing. In this case all metadata is ignored.
kwcoco.CocoDataset.remove_annotation
- Remove a single annotation from the dataset
kwcoco.CocoDataset.remove_annotation_keypoints
- Removes all keypoints with a particular category
kwcoco.CocoDataset.remove_annotations
- Remove multiple annotations from the dataset.
kwcoco.CocoDataset.remove_categories
- Remove categories and all annotations in those categories. Currently does not change any hierarchy information
kwcoco.CocoDataset.remove_images
- Remove images and any annotations contained by them
kwcoco.CocoDataset.remove_keypoint_categories
- Removes all keypoints of a particular category as well as all annotation keypoints with those ids.
kwcoco.CocoDataset.remove_videos
- Remove videos and any images / annotations contained by them
kwcoco.CocoDataset.set_annotation_category
- Sets the category of a single annotation
CocoDataset methods (via MixinCocoObjects)¶
kwcoco.CocoDataset.annots
- Return vectorized annotation objects
kwcoco.CocoDataset.categories
- Return vectorized category objects
kwcoco.CocoDataset.images
- Return vectorized image objects
kwcoco.CocoDataset.videos
- Return vectorized video objects
CocoDataset methods (via MixinCocoStats)¶
kwcoco.CocoDataset.basic_stats
- Reports number of images, annotations, and categories.
kwcoco.CocoDataset.boxsize_stats
- Compute statistics about bounding box sizes.
kwcoco.CocoDataset.category_annotation_frequency
- Reports the number of annotations of each category
kwcoco.CocoDataset.category_annotation_type_frequency
- Reports the number of annotations of each type for each category
kwcoco.CocoDataset.conform
- Make the COCO file conform a stricter spec, infers attibutes where possible.
kwcoco.CocoDataset.extended_stats
- Reports number of images, annotations, and categories.
kwcoco.CocoDataset.find_representative_images
- Find images that have a wide array of categories. Attempt to find the fewest images that cover all categories using images that contain both a large and small number of annotations.
kwcoco.CocoDataset.keypoint_annotation_frequency
-
kwcoco.CocoDataset.stats
- This function corresponds tokwcoco.cli.coco_stats
.
kwcoco.CocoDataset.validate
- Performs checks on this coco dataset.
CocoDataset methods (via MixinCocoAccessors)¶
kwcoco.CocoDataset.category_graph
- Construct a networkx category hierarchy
kwcoco.CocoDataset.delayed_load
- Experimental method
kwcoco.CocoDataset.get_auxiliary_fpath
- Returns the full path to auxiliary data for an image
kwcoco.CocoDataset.get_image_fpath
- Returns the full path to the image
kwcoco.CocoDataset.keypoint_categories
- Construct a consistent CategoryTree representation of keypoint classes
kwcoco.CocoDataset.load_annot_sample
- Reads the chip of an annotation. Note this is much less efficient than using a sampler, but it doesn’t require disk cache.
kwcoco.CocoDataset.load_image
- Reads an image from disk and
kwcoco.CocoDataset.object_categories
- Construct a consistent CategoryTree representation of object classes
CocoDataset methods (via CocoDataset)¶
kwcoco.CocoDataset.copy
- Deep copies this object
kwcoco.CocoDataset.dump
- Writes the dataset out to the json format
kwcoco.CocoDataset.dumps
- Writes the dataset out to the json format
kwcoco.CocoDataset.subset
- Return a subset of the larger coco dataset by specifying which images to port. All annotations in those images will be taken.
kwcoco.CocoDataset.union
- Merges multipleCocoDataset
items into one. Names and associations are retained, but ids may be different.
kwcoco.CocoDataset.view_sql
- Create a cached SQL interface to this dataset suitable for large scale multiprocessing use cases.
CocoDataset methods (via MixinCocoExtras)¶
kwcoco.CocoDataset.corrupted_images
- Check for images that don’t exist or can’t be opened
kwcoco.CocoDataset.missing_images
- Check for images that don’t exist
kwcoco.CocoDataset.rename_categories
- Rename categories with a potentially coarser categorization.
kwcoco.CocoDataset.reroot
- Rebase image/data paths onto a new image/data root.
CocoDataset methods (via MixinCocoDraw)¶
kwcoco.CocoDataset.draw_image
- Use kwimage to draw all annotations on an image and return the pixels as a numpy array.
kwcoco.CocoDataset.imread
- Loads a particular image
kwcoco.CocoDataset.show_image
- Use matplotlib to show an image with annotations overlaid
kwcoco¶
kwcoco package¶
Subpackages¶
kwcoco.cli package¶
Submodules¶
- class kwcoco.cli.coco_conform.CocoConformCLI[source]¶
Bases:
object
- name = 'conform'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Infer properties to make the COCO file conform to different specs.
Arguments can be used to control which information is inferred. By default, information such as image size, annotation area, are added to the file.
Other arguments like
--legacy
and--mmlab
can be used to conform to specifications expected by external tooling.- Parameters
data (object) – filepath, dict, or None
default (dict | None) – overrides the class defaults
cmdline (bool | List[str] | str | dict) – If False, then no command line information is used. If True, then sys.argv is parsed and used. If a list of strings that used instead of sys.argv. If a string, then that is parsed using shlex and used instead
of sys.argv.
If a dictionary grants fine grained controls over the args passed to
Config._read_argv()
. Can contain:strict (bool): defaults to False
argv (List[str]): defaults to None
special_options (bool): defaults to True
autocomplete (bool): defaults to False
Defaults to False.
Note
Avoid setting
cmdline
parameter here. Instead prefer to use thecli
classmethod to create a command line aware config instance..- epilog = '\n Example Usage:\n kwcoco conform --help\n kwcoco conform --src=special:shapes8 --dst conformed.json\n kwcoco conform special:shapes8 conformed.json\n '¶
- default = {'compress': <Value('auto')>, 'dst': <Value(None)>, 'ensure_imgsize': <Value(True)>, 'legacy': <Value(False)>, 'mmlab': <Value(False)>, 'pycocotools_info': <Value(True)>, 'src': <Value(None)>, 'workers': <Value(8)>}¶
- classmethod main(cmdline=True, **kw)[source]¶
Example
>>> from kwcoco.cli.coco_conform import * # NOQA >>> import kwcoco >>> import ubelt as ub >>> dpath = ub.Path.appdir('kwcoco/tests/cli/conform').ensuredir() >>> dst = dpath / 'out.kwcoco.json' >>> kw = {'src': 'special:shapes8', 'dst': dst, 'compress': True} >>> cmdline = False >>> cls = CocoConformCLI >>> cls.main(cmdline, **kw)
- kwcoco.cli.coco_conform._CLI¶
alias of
CocoConformCLI
Wraps the logic in kwcoco/coco_evaluator.py with a command line script
- class kwcoco.cli.coco_eval.CocoEvalCLIConfig(*args, **kwargs)[source]¶
Bases:
CocoEvalConfig
Valid options: []
- Parameters
*args – positional arguments for this data config
**kwargs – keyword arguments for this data config
- default = {'ap_method': <Value('pycocotools')>, 'area_range': <Value(['all'])>, 'assign_workers': <Value(8)>, 'classes_of_interest': <Value(None)>, 'compat': <Value('mutex')>, 'draw': <Value(True)>, 'expt_title': <Value('')>, 'force_pycocoutils': <Value(False)>, 'fp_cutoff': <Value(inf)>, 'ignore_classes': <Value(None)>, 'implicit_ignore_classes': <Value(['ignore'])>, 'implicit_negative_classes': <Value(['background'])>, 'iou_bias': <Value(1)>, 'iou_thresh': <Value(0.5)>, 'load_workers': <Value(0)>, 'max_dets': <Value(inf)>, 'monotonic_ppv': <Value(True)>, 'out_dpath': <Value('./coco_metrics')>, 'pred_dataset': <Value(None)>, 'true_dataset': <Value(None)>, 'use_area_attr': <Value('try')>, 'use_image_names': <Value(False)>}¶
- class kwcoco.cli.coco_eval.CocoEvalCLI[source]¶
Bases:
object
- name = 'eval'¶
- CLIConfig¶
alias of
CocoEvalCLIConfig
- classmethod main(cmdline=True, **kw)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> from kwcoco.cli.coco_eval import * # NOQA >>> import ubelt as ub >>> from kwcoco.cli.coco_eval import * # NOQA >>> from os.path import join >>> import kwcoco >>> dpath = ub.Path.appdir('kwcoco/tests/eval').ensuredir() >>> true_dset = kwcoco.CocoDataset.demo('shapes8') >>> from kwcoco.demo.perterb import perterb_coco >>> kwargs = { >>> 'box_noise': 0.5, >>> 'n_fp': (0, 10), >>> 'n_fn': (0, 10), >>> } >>> pred_dset = perterb_coco(true_dset, **kwargs) >>> true_dset.fpath = join(dpath, 'true.mscoco.json') >>> pred_dset.fpath = join(dpath, 'pred.mscoco.json') >>> true_dset.dump(true_dset.fpath) >>> pred_dset.dump(pred_dset.fpath) >>> draw = False # set to false for faster tests >>> CocoEvalCLI.main(cmdline=False, >>> true_dataset=true_dset.fpath, >>> pred_dataset=pred_dset.fpath, >>> draw=draw, out_dpath=dpath)
- kwcoco.cli.coco_eval.main(cmdline=True, **kw)[source]¶
Todo
[X] should live in kwcoco.cli.coco_eval
CommandLine
# Generate test data xdoctest -m kwcoco.cli.coco_eval CocoEvalCLI.main kwcoco eval \ --true_dataset=$HOME/.cache/kwcoco/tests/eval/true.mscoco.json \ --pred_dataset=$HOME/.cache/kwcoco/tests/eval/pred.mscoco.json \ --out_dpath=$HOME/.cache/kwcoco/tests/eval/out \ --force_pycocoutils=False \ --area_range=all,0-4096,4096-inf nautilus $HOME/.cache/kwcoco/tests/eval/out
- kwcoco.cli.coco_eval._CLI¶
alias of
CocoEvalCLI
- class kwcoco.cli.coco_grab.CocoGrabCLI[source]¶
Bases:
object
- name = 'grab'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Grab standard datasets.
Example
kwcoco grab cifar10 camvid
- Parameters
data (object) – filepath, dict, or None
default (dict | None) – overrides the class defaults
cmdline (bool | List[str] | str | dict) – If False, then no command line information is used. If True, then sys.argv is parsed and used. If a list of strings that used instead of sys.argv. If a string, then that is parsed using shlex and used instead
of sys.argv.
If a dictionary grants fine grained controls over the args passed to
Config._read_argv()
. Can contain:strict (bool): defaults to False
argv (List[str]): defaults to None
special_options (bool): defaults to True
autocomplete (bool): defaults to False
Defaults to False.
Note
Avoid setting
cmdline
parameter here. Instead prefer to use thecli
classmethod to create a command line aware config instance..- default = {'dpath': <Path(Path('/home/docs/.cache/kwcoco/data'))>, 'names': <Value([])>}¶
- kwcoco.cli.coco_grab._CLI¶
alias of
CocoGrabCLI
- class kwcoco.cli.coco_modify_categories.CocoModifyCatsCLI[source]¶
Bases:
object
Remove, rename, or coarsen categories.
- name = 'modify_categories'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Rename or remove categories
- Parameters
data (object) – filepath, dict, or None
default (dict | None) – overrides the class defaults
cmdline (bool | List[str] | str | dict) – If False, then no command line information is used. If True, then sys.argv is parsed and used. If a list of strings that used instead of sys.argv. If a string, then that is parsed using shlex and used instead
of sys.argv.
If a dictionary grants fine grained controls over the args passed to
Config._read_argv()
. Can contain:strict (bool): defaults to False
argv (List[str]): defaults to None
special_options (bool): defaults to True
autocomplete (bool): defaults to False
Defaults to False.
Note
Avoid setting
cmdline
parameter here. Instead prefer to use thecli
classmethod to create a command line aware config instance..- epilog = '\n Example Usage:\n kwcoco modify_categories --help\n kwcoco modify_categories --src=special:shapes8 --dst modcats.json\n kwcoco modify_categories --src=special:shapes8 --dst modcats.json --rename eff:F,star:sun\n kwcoco modify_categories --src=special:shapes8 --dst modcats.json --remove eff,star\n kwcoco modify_categories --src=special:shapes8 --dst modcats.json --keep eff,\n\n kwcoco modify_categories --src=special:shapes8 --dst modcats.json --keep=[] --keep_annots=True\n '¶
- default = {'compress': <Value('auto')>, 'dst': <Value(None)>, 'keep': <Value(None)>, 'keep_annots': <Value(False)>, 'remove': <Value(None)>, 'rename': <Value(None)>, 'src': <Value(None)>}¶
- kwcoco.cli.coco_modify_categories._CLI¶
alias of
CocoModifyCatsCLI
- class kwcoco.cli.coco_move.CocoMove(*args, **kwargs)[source]¶
Bases:
DataConfig
Move a kwcoco file to a new location while maintaining relative paths. This is equivalent to a regular copy followed by
kwcoco reroot
followed by a delete of the original.TODO: add option to move the assets as well?
Valid options: []
- Parameters
*args – positional arguments for this data config
**kwargs – keyword arguments for this data config
- classmethod main(cmdline=1, **kwargs)[source]¶
Example
>>> import ubelt as ub >>> from kwcoco.cli import coco_move >>> import kwcoco >>> dpath = ub.Path.appdir('kwcoco/doctest/move') >>> dpath.delete().ensuredir() >>> dset = kwcoco.CocoDataset.demo('vidshapes2', dpath=dpath) >>> cmdline = 0 >>> dst = (ub.Path(dset.bundle_dpath) / 'new_dpath').ensuredir() >>> kwargs = dict(src=dset.fpath, dst=dst) >>> coco_move.CocoMove.main(cmdline=cmdline, **kwargs) >>> assert dst.exists() >>> assert not ub.Path(dset.fpath).exists()
- default = {'absolute': <Value(False)>, 'check': <Value(True)>, 'dst': <Value(None)>, 'src': <Value(None)>}¶
- class kwcoco.cli.coco_reroot.CocoRerootCLI[source]¶
Bases:
object
- name = 'reroot'¶
- class CocoRerootConfig(*args, **kwargs)[source]¶
Bases:
DataConfig
Reroot image paths onto a new image root.
Modify the root of a coco dataset such to either make paths relative to a new root or make paths absolute.
Todo
[ ] Evaluate that all tests cases work
Valid options: []
- Parameters
*args – positional arguments for this data config
**kwargs – keyword arguments for this data config
- default = {'absolute': <Value(True)>, 'autofix': <Value(False)>, 'check': <Value(True)>, 'compress': <Value('auto')>, 'dst': <Value(None)>, 'inplace': <Value(False)>, 'new_prefix': <Value(None)>, 'old_prefix': <Value(None)>, 'src': <Value(None)>}¶
- CLIConfig¶
alias of
CocoRerootConfig
- kwcoco.cli.coco_reroot._CLI¶
alias of
CocoRerootCLI
- class kwcoco.cli.coco_show.CocoShowCLI[source]¶
Bases:
object
- name = 'show'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Visualize a COCO image using matplotlib or opencv, optionally writing it to disk
- Parameters
data (object) – filepath, dict, or None
default (dict | None) – overrides the class defaults
cmdline (bool | List[str] | str | dict) – If False, then no command line information is used. If True, then sys.argv is parsed and used. If a list of strings that used instead of sys.argv. If a string, then that is parsed using shlex and used instead
of sys.argv.
If a dictionary grants fine grained controls over the args passed to
Config._read_argv()
. Can contain:strict (bool): defaults to False
argv (List[str]): defaults to None
special_options (bool): defaults to True
autocomplete (bool): defaults to False
Defaults to False.
Note
Avoid setting
cmdline
parameter here. Instead prefer to use thecli
classmethod to create a command line aware config instance..- default = {'aid': <Value(None)>, 'channels': <Value(None)>, 'dst': <Value(None)>, 'gid': <Value(None)>, 'mode': <Value('matplotlib')>, 'show_annots': <Value(True)>, 'show_labels': <Value(False)>, 'src': <Value(None)>}¶
- kwcoco.cli.coco_show._CLI¶
alias of
CocoShowCLI
- class kwcoco.cli.coco_split.CocoSplitCLI[source]¶
Bases:
object
Splits a coco files into two parts base on some criteria.
Useful for generating quick and dirty train/test splits, but in general users should opt for using
kwcoco subset
instead to explicitly construct these splits based on domain knowledge.- name = 'split'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Split a single COCO dataset into two sub-datasets.
- Parameters
data (object) – filepath, dict, or None
default (dict | None) – overrides the class defaults
cmdline (bool | List[str] | str | dict) – If False, then no command line information is used. If True, then sys.argv is parsed and used. If a list of strings that used instead of sys.argv. If a string, then that is parsed using shlex and used instead
of sys.argv.
If a dictionary grants fine grained controls over the args passed to
Config._read_argv()
. Can contain:strict (bool): defaults to False
argv (List[str]): defaults to None
special_options (bool): defaults to True
autocomplete (bool): defaults to False
Defaults to False.
Note
Avoid setting
cmdline
parameter here. Instead prefer to use thecli
classmethod to create a command line aware config instance..- default = {'balance_categories': <Value(True)>, 'compress': <Value('auto')>, 'dst1': <Value('split1.kwcoco.json')>, 'dst2': <Value('split2.kwcoco.json')>, 'factor': <Value(3)>, 'num_write': <Value(1)>, 'rng': <Value(None)>, 'splitter': <Value('auto')>, 'src': <Value(None)>}¶
- classmethod main(cmdline=True, **kw)[source]¶
Example
>>> from kwcoco.cli.coco_split import * # NOQA >>> import ubelt as ub >>> dpath = ub.Path.appdir('kwcoco/tests/cli/split').ensuredir() >>> kw = {'src': 'special:vidshapes8', >>> 'dst1': dpath / 'train.json', >>> 'dst2': dpath / 'test.json'} >>> cmdline = False >>> cls = CocoSplitCLI >>> cls.main(cmdline, **kw)
- kwcoco.cli.coco_split._CLI¶
alias of
CocoSplitCLI
- class kwcoco.cli.coco_stats.CocoStatsCLI[source]¶
Bases:
object
- name = 'stats'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
- Parameters
data (object) – filepath, dict, or None
default (dict | None) – overrides the class defaults
cmdline (bool | List[str] | str | dict) – If False, then no command line information is used. If True, then sys.argv is parsed and used. If a list of strings that used instead of sys.argv. If a string, then that is parsed using shlex and used instead
of sys.argv.
If a dictionary grants fine grained controls over the args passed to
Config._read_argv()
. Can contain:strict (bool): defaults to False
argv (List[str]): defaults to None
special_options (bool): defaults to True
autocomplete (bool): defaults to False
Defaults to False.
Note
Avoid setting
cmdline
parameter here. Instead prefer to use thecli
classmethod to create a command line aware config instance..- epilog = '\n Example Usage:\n kwcoco stats --src=special:shapes8\n kwcoco stats --src=special:shapes8 --boxes=True\n '¶
- default = {'annot_attrs': <Value(False)>, 'basic': <Value(True)>, 'boxes': <Value(False)>, 'catfreq': <Value(True)>, 'embed': <Value(False)>, 'extended': <Value(True)>, 'image_attrs': <Value(False)>, 'image_size': <Value(False)>, 'src': <Value(['special:shapes8'])>, 'video_attrs': <Value(False)>}¶
- kwcoco.cli.coco_stats._CLI¶
alias of
CocoStatsCLI
- kwcoco.cli.coco_stats.main(cmdline=True, **kw)¶
Example
>>> kw = {'src': 'special:shapes8'} >>> cmdline = False >>> cls = CocoStatsCLI >>> cls.main(cmdline, **kw)
- class kwcoco.cli.coco_subset.CocoSubsetCLI[source]¶
Bases:
object
- name = 'subset'¶
- class CocoSubetConfig(*args, **kwargs)[source]¶
Bases:
DataConfig
Take a subset of this dataset and write it to a new file
Valid options: []
- Parameters
*args – positional arguments for this data config
**kwargs – keyword arguments for this data config
- default = {'absolute': <Value('auto')>, 'channels': <Value(None)>, 'compress': <Value('auto')>, 'copy_assets': <Value(False)>, 'dst': <Value(None)>, 'gids': <Value(None)>, 'include_categories': <Value(None)>, 'select_images': <Value(None)>, 'select_videos': <Value(None)>, 'src': <Value(None)>}¶
- CLIConfig¶
alias of
CocoSubetConfig
- classmethod main(cmdline=True, **kw)[source]¶
Example
>>> from kwcoco.cli.coco_subset import * # NOQA >>> import ubelt as ub >>> dpath = ub.Path.appdir('kwcoco/tests/cli/union').ensuredir() >>> kw = {'src': 'special:shapes8', >>> 'dst': dpath / 'subset.json', >>> 'include_categories': 'superstar'} >>> cmdline = False >>> cls = CocoSubsetCLI >>> cls.main(cmdline, **kw)
- kwcoco.cli.coco_subset.query_subset(dset, config)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:jq) >>> from kwcoco.cli.coco_subset import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> assert dset.n_images == 3 >>> # >>> config = CocoSubsetCLI.CLIConfig(**{'select_images': '.id < 3'}) >>> new_dset = query_subset(dset, config) >>> assert new_dset.n_images == 2 >>> # >>> config = CocoSubsetCLI.CLIConfig(**{'select_images': '.file_name | test(".*.png")'}) >>> new_dset = query_subset(dset, config) >>> assert all(n.endswith('.png') for n in new_dset.images().lookup('file_name')) >>> assert new_dset.n_images == 2 >>> # >>> config = CocoSubsetCLI.CLIConfig(**{'select_images': '.file_name | test(".*.png") | not'}) >>> new_dset = query_subset(dset, config) >>> assert not any(n.endswith('.png') for n in new_dset.images().lookup('file_name')) >>> assert new_dset.n_images == 1 >>> # >>> config = CocoSubsetCLI.CLIConfig(**{'select_images': '.id < 3 and (.file_name | test(".*.png"))'}) >>> new_dset = query_subset(dset, config) >>> assert new_dset.n_images == 1 >>> # >>> config = CocoSubsetCLI.CLIConfig(**{'select_images': '.id < 3 or (.file_name | test(".*.png"))'}) >>> new_dset = query_subset(dset, config) >>> assert new_dset.n_images == 3
Example
>>> # xdoctest: +REQUIRES(module:jq) >>> from kwcoco.cli.coco_subset import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8') >>> assert dset.n_videos == 8 >>> assert dset.n_images == 16 >>> config = CocoSubsetCLI.CLIConfig(**{'select_videos': '.name == "toy_video_3"'}) >>> new_dset = query_subset(dset, config) >>> assert new_dset.n_images == 2 >>> assert new_dset.n_videos == 1
- kwcoco.cli.coco_subset._CLI¶
alias of
CocoSubsetCLI
- class kwcoco.cli.coco_toydata.CocoToyDataCLI[source]¶
Bases:
object
- name = 'toydata'¶
- class CLIConfig(data=None, default=None, cmdline=False)[source]¶
Bases:
Config
Create COCO toydata for demo and testing purposes.
- Parameters
data (object) – filepath, dict, or None
default (dict | None) – overrides the class defaults
cmdline (bool | List[str] | str | dict) – If False, then no command line information is used. If True, then sys.argv is parsed and used. If a list of strings that used instead of sys.argv. If a string, then that is parsed using shlex and used instead
of sys.argv.
If a dictionary grants fine grained controls over the args passed to
Config._read_argv()
. Can contain:strict (bool): defaults to False
argv (List[str]): defaults to None
special_options (bool): defaults to True
autocomplete (bool): defaults to False
Defaults to False.
Note
Avoid setting
cmdline
parameter here. Instead prefer to use thecli
classmethod to create a command line aware config instance..- epilog = '\n Example Usage:\n kwcoco toydata --key=shapes8 --dst=toydata.kwcoco.json\n\n kwcoco toydata --key=shapes8 --bundle_dpath=my_test_bundle_v1\n kwcoco toydata --key=shapes8 --bundle_dpath=my_test_bundle_v1\n\n kwcoco toydata \\\n --key=vidshapes1-frames32 \\\n --dst=./mytoybundle/dataset.kwcoco.json\n\n TODO:\n - [ ] allow specification of images directory\n '¶
- default = {'bundle_dpath': <Value(None)>, 'dst': <Value(None)>, 'key': <Value('shapes8')>, 'use_cache': <Value(True)>, 'verbose': <Value(False)>}¶
- classmethod main(cmdline=True, **kw)[source]¶
Example
>>> from kwcoco.cli.coco_toydata import * # NOQA >>> import ubelt as ub >>> dpath = ub.Path.appdir('kwcoco/tests/cli/demo').ensuredir() >>> kw = {'key': 'shapes8', 'dst': dpath / 'test.json'} >>> cmdline = False >>> cls = CocoToyDataCLI >>> cls.main(cmdline, **kw)
- kwcoco.cli.coco_toydata._CLI¶
alias of
CocoToyDataCLI
- class kwcoco.cli.coco_union.CocoUnionCLI[source]¶
Bases:
object
- name = 'union'¶
- class CLIConfig(*args, **kwargs)[source]¶
Bases:
DataConfig
Combine multiple COCO datasets into a single merged dataset.
Valid options: []
- Parameters
*args – positional arguments for this data config
**kwargs – keyword arguments for this data config
- default = {'absolute': <Value(False)>, 'compress': <Value('auto')>, 'dst': <Value('combo.kwcoco.json')>, 'io_workers': <Value('avail-2')>, 'remember_parent': <Value(False)>, 'src': <Value([])>}¶
- classmethod main(cmdline=True, **kw)[source]¶
Example
>>> from kwcoco.cli.coco_union import * # NOQA >>> import ubelt as ub >>> dpath = ub.Path.appdir('kwcoco/tests/cli/union').ensuredir() >>> dst_fpath = dpath / 'combo.kwcoco.json' >>> kw = { >>> 'src': ['special:shapes8', 'special:shapes1'], >>> 'dst': dst_fpath >>> } >>> cmdline = False >>> cls = CocoUnionCLI >>> cls.main(cmdline, **kw)
- kwcoco.cli.coco_union._CLI¶
alias of
CocoUnionCLI
- class kwcoco.cli.coco_validate.CocoValidateCLI[source]¶
Bases:
object
- name = 'validate'¶
- class CLIConfig(*args, **kwargs)[source]¶
Bases:
DataConfig
Validates that a coco file satisfies expected properties.
Checks that a coco file conforms to the json schema, that assets exist, and that other expected properties are satisfied.
This also has the ability to fix corrupted assets by removing them, but that functionality may be moved to a new command in the future.
Valid options: []
- Parameters
*args – positional arguments for this data config
**kwargs – keyword arguments for this data config
- default = {'channels': <Value(True)>, 'corrupted': <Value(False)>, 'dst': <Value(None)>, 'fastfail': <Value(False)>, 'fix': <Value(None)>, 'img_attrs': <Value('warn')>, 'missing': <Value(True)>, 'require_relative': <Value(False)>, 'schema': <Value(True)>, 'src': <Value(None)>, 'unique': <Value(True)>, 'verbose': <Value(1)>, 'workers': <Value(0)>}¶
- kwcoco.cli.coco_validate._CLI¶
alias of
CocoValidateCLI
Module contents¶
kwcoco.data package¶
Submodules¶
Downloads the CamVid data if necessary, and converts it to COCO.
- kwcoco.data.grab_camvid.grab_camvid_sampler()[source]¶
Grab a kwcoco.CocoSampler object for the CamVid dataset.
- Returns
sampler
- Return type
kwcoco.CocoSampler
Example
>>> # xdoctest: +REQUIRES(--download) >>> sampler = grab_camvid_sampler() >>> print('sampler = {!r}'.format(sampler)) >>> # sampler.load_sample() >>> for gid in ub.ProgIter(sampler.image_ids, desc='load image'): >>> img = sampler.load_image(gid)
- kwcoco.data.grab_camvid.grab_coco_camvid()[source]¶
Example
>>> # xdoctest: +REQUIRES(--download) >>> dset = grab_coco_camvid() >>> print('dset = {!r}'.format(dset)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> plt = kwplot.autoplt() >>> plt.clf() >>> dset.show_image(gid=1)
- kwcoco.data.grab_camvid.convert_camvid_raw_to_coco(camvid_raw_info)[source]¶
Converts the raw camvid format to an MSCOCO based format, ( which lets use use kwcoco’s COCO backend).
Example
>>> # xdoctest: +REQUIRES(--download) >>> camvid_raw_info = grab_raw_camvid() >>> # test with a reduced set of data >>> del camvid_raw_info['img_paths'][2:] >>> del camvid_raw_info['mask_paths'][2:] >>> dset = convert_camvid_raw_to_coco(camvid_raw_info) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> plt = kwplot.autoplt() >>> kwplot.figure(fnum=1, pnum=(1, 2, 1)) >>> dset.show_image(gid=1) >>> kwplot.figure(fnum=1, pnum=(1, 2, 2)) >>> dset.show_image(gid=2)
- kwcoco.data.grab_camvid.main()[source]¶
Dump the paths to the coco file to stdout
- By default these will go to in the path:
~/.cache/kwcoco/camvid/camvid-master
- The four files will be:
~/.cache/kwcoco/camvid/camvid-master/camvid-full.mscoco.json ~/.cache/kwcoco/camvid/camvid-master/camvid-train.mscoco.json ~/.cache/kwcoco/camvid/camvid-master/camvid-vali.mscoco.json ~/.cache/kwcoco/camvid/camvid-master/camvid-test.mscoco.json
Todo
[ ] UCF101 - Action Recognition Data Set - https://www.crcv.ucf.edu/data/UCF101.php
[ ] HMDB: a large human motion database - https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
[ ] https://paperswithcode.com/dataset/visual-question-answering
References
References
https://medium.com/the-downlinq/the-spacenet-7-multi-temporal-urban-development-challenge-algorithmic-baseline-4515ec9bd9fe https://arxiv.org/pdf/2102.11958.pdf https://spacenet.ai/sn7-challenge/
- kwcoco.data.grab_spacenet.grab_spacenet7(data_dpath)[source]¶
References
https://spacenet.ai/sn7-challenge/
- Requires:
awscli
- kwcoco.data.grab_spacenet.convert_spacenet_to_kwcoco(extract_dpath, coco_fpath)[source]¶
Converts the raw SpaceNet7 dataset to kwcoco
Note
The “train” directory contains 60 “videos” representing a region over time.
- Each “video” directory contains :
images - unmasked images
images_masked - images with masks applied
labels - geojson polys in wgs84?
labels_match - geojson polys in wgs84 with track ids?
labels_match_pix - geojson polys in pixels with track ids?
UDM_masks - unusable data masks (binary data corresponding with an image, may not exist)
- File names appear like:
“global_monthly_2018_01_mosaic_L15-1538E-1163N_6154_3539_13”
- kwcoco.data.grab_voc.__torrent_voc()[source]¶
- Requires:
pip install deluge pip install python-libtorrent-bin
References
https://academictorrents.com/details/f6ddac36ac7ae2ef79dc72a26a065b803c9c7230
Todo
[ ] Is there a pythonic way to download a torrent programatically?
- kwcoco.data.grab_voc._convert_voc_split(devkit_dpath, classes, split, year, root)[source]¶
split, year = ‘train’, 2012 split, year = ‘train’, 2007
- kwcoco.data.grab_voc._read_split_paths(devkit_dpath, split, year)[source]¶
split = ‘train’ self = VOCDataset(‘test’) year = 2007 year = 2012
- kwcoco.data.grab_voc.ensure_voc_data(dpath=None, force=False, years=[2007, 2012])[source]¶
Download the Pascal VOC data if it does not already exist.
Note
[ ] These URLS seem to be dead
Example
>>> # xdoctest: +REQUIRES(--download) >>> devkit_dpath = ensure_voc_data()
Module contents¶
kwcoco.demo package¶
Submodules¶
- class kwcoco.demo.boids.Boids(num, dims=2, rng=None, **kwargs)[source]¶
Bases:
NiceRepr
Efficient numpy based backend for generating boid positions.
BOID = bird-oid object
References
https://www.youtube.com/watch?v=mhjuuHl6qHM https://medium.com/better-programming/boids-simulating-birds-flock-behavior-in-python-9fff99375118 https://en.wikipedia.org/wiki/Boids
Example
>>> from kwcoco.demo.boids import * # NOQA >>> num_frames = 10 >>> num_objects = 3 >>> rng = None >>> self = Boids(num=num_objects, rng=rng).initialize() >>> paths = self.paths(num_frames) >>> # >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> plt = kwplot.autoplt() >>> from mpl_toolkits.mplot3d import Axes3D # NOQA >>> ax = plt.gca(projection='3d') >>> ax.cla() >>> # >>> for path in paths: >>> time = np.arange(len(path)) >>> ax.plot(time, path.T[0] * 1, path.T[1] * 1, ',-') >>> ax.set_xlim(0, num_frames) >>> ax.set_ylim(-.01, 1.01) >>> ax.set_zlim(-.01, 1.01) >>> ax.set_xlabel('time') >>> ax.set_ylabel('u-pos') >>> ax.set_zlabel('v-pos') >>> kwplot.show_if_requested()
import xdev _ = xdev.profile_now(self.compute_forces)() _ = xdev.profile_now(self.update_neighbors)()
Example
>>> # Test determenism >>> from kwcoco.demo.boids import * # NOQA >>> num_frames = 2 >>> num_objects = 1 >>> rng = 4532 >>> self = Boids(num=num_objects, rng=rng).initialize() >>> #print(ub.hash_data(self.pos)) >>> #print(ub.hash_data(self.vel)) >>> #print(ub.hash_data(self.acc)) >>> tocheck = [] >>> for i in range(100): >>> self = Boids(num=num_objects, rng=rng).initialize() >>> self.step() >>> self.step() >>> self.step() >>> tocheck.append(self.pos.copy()) >>> assert ub.allsame(list(map(ub.hash_data, tocheck)))
- kwcoco.demo.boids.clamp_mag(vec, mag, axis=None)[source]¶
vec = np.random.rand(10, 2) mag = 1.0 axis = 1 new_vec = clamp_mag(vec, mag, axis) np.linalg.norm(new_vec, axis=axis)
- kwcoco.demo.boids.triu_condense_multi_index(multi_index, dims, symetric=False)[source]¶
Like np.ravel_multi_index but returns positions in an upper triangular condensed square matrix
Examples
- multi_index (Tuple[ArrayLike]):
indexes for each dimension into the square matrix
- dims (Tuple[int]):
shape of each dimension in the square matrix (should all be the same)
- symetric (bool):
if True, converts lower triangular indices to their upper triangular location. This may cause a copy to occur.
References
https://stackoverflow.com/a/36867493/887074 https://numpy.org/doc/stable/reference/generated/numpy.ravel_multi_index.html#numpy.ravel_multi_index
Examples
>>> dims = (3, 3) >>> symetric = True >>> multi_index = (np.array([0, 0, 1]), np.array([1, 2, 2])) >>> condensed_idxs = triu_condense_multi_index(multi_index, dims, symetric=symetric) >>> assert condensed_idxs.tolist() == [0, 1, 2]
>>> n = 7 >>> symetric = True >>> multi_index = np.triu_indices(n=n, k=1) >>> condensed_idxs = triu_condense_multi_index(multi_index, [n] * 2, symetric=symetric) >>> assert condensed_idxs.tolist() == list(range(n * (n - 1) // 2)) >>> from scipy.spatial.distance import pdist, squareform >>> square_mat = np.zeros((n, n)) >>> conden_mat = squareform(square_mat) >>> conden_mat[condensed_idxs] = np.arange(len(condensed_idxs)) + 1 >>> square_mat = squareform(conden_mat) >>> print('square_mat =\n{}'.format(ub.urepr(square_mat, nl=1)))
>>> n = 7 >>> symetric = True >>> multi_index = np.tril_indices(n=n, k=-1) >>> condensed_idxs = triu_condense_multi_index(multi_index, [n] * 2, symetric=symetric) >>> assert sorted(condensed_idxs.tolist()) == list(range(n * (n - 1) // 2)) >>> from scipy.spatial.distance import pdist, squareform >>> square_mat = np.zeros((n, n)) >>> conden_mat = squareform(square_mat, checks=False) >>> conden_mat[condensed_idxs] = np.arange(len(condensed_idxs)) + 1 >>> square_mat = squareform(conden_mat) >>> print('square_mat =\n{}'.format(ub.urepr(square_mat, nl=1)))
- kwcoco.demo.boids.closest_point_on_line_segment(pts, e1, e2)[source]¶
Finds the closet point from p on line segment (e1, e2)
- Parameters
pts (ndarray) – xy points [Nx2]
e1 (ndarray) – the first xy endpoint of the segment
e2 (ndarray) – the second xy endpoint of the segment
- Returns
pt_on_seg - the closest xy point on (e1, e2) from ptp
- Return type
ndarray
References
http://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line http://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment
Example
>>> # ENABLE_DOCTEST >>> from kwcoco.demo.boids import * # NOQA >>> verts = np.array([[ 21.83012702, 13.16987298], >>> [ 16.83012702, 21.83012702], >>> [ 8.16987298, 16.83012702], >>> [ 13.16987298, 8.16987298], >>> [ 21.83012702, 13.16987298]]) >>> rng = np.random.RandomState(0) >>> pts = rng.rand(64, 2) * 20 + 5 >>> e1, e2 = verts[0:2] >>> closest_point_on_line_segment(pts, e1, e2)
- kwcoco.demo.perterb.perterb_coco(coco_dset, **kwargs)[source]¶
Perterbs a coco dataset
- Parameters
rng (int, default=0)
box_noise (int, default=0)
cls_noise (int, default=0)
null_pred (bool, default=False)
with_probs (bool, default=False)
score_noise (float, default=0.2)
hacked (int, default=1)
Example
>>> from kwcoco.demo.perterb import * # NOQA >>> from kwcoco.demo.perterb import _demo_construct_probs >>> import kwcoco >>> coco_dset = true_dset = kwcoco.CocoDataset.demo('shapes2') >>> kwargs = { >>> 'box_noise': 0.5, >>> 'n_fp': 3, >>> 'with_probs': 1, >>> 'with_heatmaps': 1, >>> } >>> pred_dset = perterb_coco(true_dset, **kwargs) >>> pred_dset._check_json_serializable() >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> gid = 1 >>> canvas = true_dset.delayed_load(gid).finalize() >>> canvas = true_dset.annots(gid=gid).detections.draw_on(canvas, color='green') >>> canvas = pred_dset.annots(gid=gid).detections.draw_on(canvas, color='blue') >>> kwplot.imshow(canvas)
- kwcoco.demo.perterb._demo_construct_probs(pred_cxs, pred_scores, classes, rng, hacked=1)[source]¶
Constructs random probabilities for demo data
Example
>>> import kwcoco >>> import kwarray >>> rng = kwarray.ensure_rng(0) >>> classes = kwcoco.CategoryTree.coerce(10) >>> hacked = 1 >>> pred_cxs = rng.randint(0, 10, 10) >>> pred_scores = rng.rand(10) >>> probs = _demo_construct_probs(pred_cxs, pred_scores, classes, rng, hacked) >>> probs.sum(axis=1)
Generates “toydata” for demo and testing purposes.
Note
The implementation of demodata_toy_img and demodata_toy_dset should be redone using the tools built for random_video_dset, which have more extensible implementations.
- kwcoco.demo.toydata.demodata_toy_dset(image_size=(600, 600), n_imgs=5, verbose=3, rng=0, newstyle=True, dpath=None, fpath=None, bundle_dpath=None, aux=None, use_cache=True, **kwargs)[source]¶
Create a toy detection problem
- Parameters
image_size (Tuple[int, int]) – The width and height of the generated images
n_imgs (int) – number of images to generate
rng (int | RandomState | None) – random number generator or seed. Defaults to 0.
newstyle (bool) – create newstyle kwcoco data. default=True
dpath (str | PathLike | None) – path to the directory that will contain the bundle, (defaults to a kwcoco cache dir). Ignored if bundle_dpath is given.
fpath (str | PathLike | None) – path to the kwcoco file. The parent will be the bundle if it is not specified. Should be a descendant of the dpath if specified.
bundle_dpath (str | PathLike | None) – path to the directory that will store images. If specified, dpath is ignored. If unspecified, a bundle will be written inside dpath.
aux (bool | None) – if True generates dummy auxiliary channels
verbose (int) – verbosity mode. default=3
use_cache (bool) – if True caches the generated json in the dpath. Default=True
**kwargs – used for old backwards compatible argument names gsize - alias for image_size
- Return type
- SeeAlso:
random_video_dset
CommandLine
xdoctest -m kwcoco.demo.toydata_image demodata_toy_dset --show
Todo
[ ] Non-homogeneous images sizes
Example
>>> from kwcoco.demo.toydata_image import * >>> import kwcoco >>> dset = demodata_toy_dset(image_size=(300, 300), aux=True, use_cache=False) >>> # xdoctest: +REQUIRES(--show) >>> print(ub.urepr(dset.dataset, nl=2)) >>> import kwplot >>> kwplot.autompl() >>> dset.show_image(gid=1) >>> ub.startfile(dset.bundle_dpath)
dset._tree()
>>> from kwcoco.demo.toydata_image import * >>> import kwcoco
dset = demodata_toy_dset(image_size=(300, 300), aux=True, use_cache=False) print(dset.imgs[1]) dset._tree()
- dset = demodata_toy_dset(image_size=(300, 300), aux=True, use_cache=False,
bundle_dpath=’test_bundle’)
print(dset.imgs[1]) dset._tree()
- dset = demodata_toy_dset(
image_size=(300, 300), aux=True, use_cache=False, dpath=’test_cache_dpath’)
- kwcoco.demo.toydata.random_single_video_dset(image_size=(600, 600), num_frames=5, num_tracks=3, tid_start=1, gid_start=1, video_id=1, anchors=None, rng=None, render=False, dpath=None, autobuild=True, verbose=3, aux=None, multispectral=False, max_speed=0.01, channels=None, multisensor=False, **kwargs)[source]¶
Create the video scene layout of object positions.
Note
Does not render the data unless specified.
- Parameters
image_size (Tuple[int, int]) – size of the images
num_frames (int) – number of frames in this video
num_tracks (int) – number of tracks in this video
tid_start (int) – track-id start index, default=1
gid_start (int) – image-id start index, default=1
video_id (int) – video-id of this video, default=1
anchors (ndarray | None) – base anchor sizes of the object boxes we will generate.
rng (RandomState | None | int) – random state / seed
render (bool | dict) – if truthy, does the rendering according to provided params in the case of dict input.
autobuild (bool) – prebuild coco lookup indexes, default=True
verbose (int) – verbosity level
aux (bool | None | List[str]) – if specified generates auxiliary channels
multispectral (bool) – if specified simulates multispectral imagry This is similar to aux, but has no “main” file.
max_speed (float) – max speed of movers
channels (str | None | kwcoco.ChannelSpec) – if specified generates multispectral images with dummy channels
multisensor (bool) –
- if True, generates demodata from “multiple sensors”, in
other words, observations may have different “bands”.
**kwargs – used for old backwards compatible argument names gsize - alias for image_size
Todo
[ ] Need maximum allowed object overlap measure
[ ] Need better parameterized path generation
Example
>>> import numpy as np >>> from kwcoco.demo.toydata_video import random_single_video_dset >>> anchors = np.array([ [0.3, 0.3], [0.1, 0.1]]) >>> dset = random_single_video_dset(render=True, num_frames=5, >>> num_tracks=3, anchors=anchors, >>> max_speed=0.2, rng=91237446) >>> # xdoctest: +REQUIRES(--show) >>> # Show the tracks in a single image >>> import kwplot >>> import kwimage >>> #kwplot.autosns() >>> kwplot.autoplt() >>> # Group track boxes and centroid locations >>> paths = [] >>> track_boxes = [] >>> for tid, aids in dset.index.trackid_to_aids.items(): >>> boxes = dset.annots(aids).boxes.to_cxywh() >>> path = boxes.data[:, 0:2] >>> paths.append(path) >>> track_boxes.append(boxes) >>> # Plot the tracks over time >>> ax = kwplot.figure(fnum=1, doclf=1).gca() >>> colors = kwimage.Color.distinct(len(track_boxes)) >>> for i, boxes in enumerate(track_boxes): >>> color = colors[i] >>> path = boxes.data[:, 0:2] >>> boxes.draw(color=color, centers={'radius': 0.01}, alpha=0.8) >>> ax.plot(path.T[0], path.T[1], 'x-', color=color) >>> ax.invert_yaxis() >>> ax.set_title('Track locations flattened over time') >>> # Plot the image sequence >>> fig = kwplot.figure(fnum=2, doclf=1) >>> gids = list(dset.imgs.keys()) >>> pnums = kwplot.PlotNums(nRows=1, nSubplots=len(gids)) >>> for gid in gids: >>> dset.show_image(gid, pnum=pnums(), fnum=2, title=f'Image {gid}', show_aid=0, setlim='image') >>> fig.suptitle('Video Frames') >>> fig.set_size_inches(15.4, 4.0) >>> fig.tight_layout() >>> kwplot.show_if_requested()
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> anchors = np.array([ [0.2, 0.2], [0.1, 0.1]]) >>> gsize = np.array([(600, 600)]) >>> print(anchors * gsize) >>> dset = random_single_video_dset(render=True, num_frames=10, >>> anchors=anchors, num_tracks=10, >>> image_size='random') >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> plt = kwplot.autoplt() >>> plt.clf() >>> gids = list(dset.imgs.keys()) >>> pnums = kwplot.PlotNums(nSubplots=len(gids)) >>> for gid in gids: >>> dset.show_image(gid, pnum=pnums(), fnum=1, title=f'Image {gid}') >>> kwplot.show_if_requested()
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> dset = random_single_video_dset(num_frames=10, num_tracks=10, aux=True) >>> assert 'auxiliary' in dset.imgs[1] >>> assert dset.imgs[1]['auxiliary'][0]['channels'] >>> assert dset.imgs[1]['auxiliary'][1]['channels']
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> multispectral = True >>> dset = random_single_video_dset(num_frames=1, num_tracks=1, multispectral=True) >>> dset._check_json_serializable() >>> dset.dataset['images'] >>> assert dset.imgs[1]['auxiliary'][1]['channels'] >>> # test that we can render >>> render_toy_dataset(dset, rng=0, dpath=None, renderkw={})
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> dset = random_single_video_dset(num_frames=4, num_tracks=1, multispectral=True, multisensor=True, image_size='random', rng=2338) >>> dset._check_json_serializable() >>> assert dset.imgs[1]['auxiliary'][1]['channels'] >>> # Print before and after render >>> #print('multisensor-images = {}'.format(ub.urepr(dset.dataset['images'], nl=-2))) >>> #print('multisensor-images = {}'.format(ub.urepr(dset.dataset, nl=-2))) >>> print(ub.hash_data(dset.dataset)) >>> # test that we can render >>> render_toy_dataset(dset, rng=0, dpath=None, renderkw={}) >>> #print('multisensor-images = {}'.format(ub.urepr(dset.dataset['images'], nl=-2))) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> from kwcoco.demo.toydata_video import _draw_video_sequence # NOQA >>> gids = [1, 2, 3, 4] >>> final = _draw_video_sequence(dset, gids) >>> print('dset.fpath = {!r}'.format(dset.fpath)) >>> kwplot.imshow(final)
- kwcoco.demo.toydata.random_video_dset(num_videos=1, num_frames=2, num_tracks=2, anchors=None, image_size=(600, 600), verbose=3, render=False, aux=None, multispectral=False, multisensor=False, rng=None, dpath=None, max_speed=0.01, channels=None, background='noise', **kwargs)[source]¶
Create a toy Coco Video Dataset
- Parameters
num_videos (int) – number of videos
num_frames (int) – number of images per video
num_tracks (int) – number of tracks per video
image_size (Tuple[int, int]) – The width and height of the generated images
render (bool | dict) – if truthy the toy annotations are synthetically rendered. See
render_toy_image()
for details.rng (int | None | RandomState) – random seed / state
dpath (str | PathLike | None) – only used if render is truthy, place to write rendered images.
verbose (int) – verbosity mode, default=3
aux (bool | None) – if True generates dummy auxiliary channels
multispectral (bool) – similar to aux, but does not have the concept of a “main” image.
max_speed (float) – max speed of movers
channels (str | None) – experimental new way to get MSI with specific band distributions.
**kwargs – used for old backwards compatible argument names gsize - alias for image_size
- SeeAlso:
random_single_video_dset
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> dset = random_video_dset(render=True, num_videos=3, num_frames=2, >>> num_tracks=5, image_size=(128, 128)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> dset.show_image(1, doclf=True) >>> dset.show_image(2, doclf=True)
>>> from kwcoco.demo.toydata_video import * # NOQA dset = random_video_dset(render=False, num_videos=3, num_frames=2, num_tracks=10) dset._tree() dset.imgs[1]
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> # Test small images >>> dset = random_video_dset(render=True, num_videos=1, num_frames=1, >>> num_tracks=1, image_size=(2, 2)) >>> ann = dset.annots().peek() >>> print('ann = {}'.format(ub.urepr(ann, nl=2))) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> dset.show_image(1, doclf=True)
- kwcoco.demo.toydata.demodata_toy_img(anchors=None, image_size=(104, 104), categories=None, n_annots=(0, 50), fg_scale=0.5, bg_scale=0.8, bg_intensity=0.1, fg_intensity=0.9, gray=True, centerobj=None, exact=False, newstyle=True, rng=None, aux=None, **kwargs)[source]¶
Generate a single image with non-overlapping toy objects of available categories.
Todo
- DEPRECATE IN FAVOR OF
random_single_video_dset + render_toy_image
- Parameters
anchors (ndarray | None) – Nx2 base width / height of boxes
gsize (Tuple[int, int]) – width / height of the image
categories (List[str] | None) – list of category names
n_annots (Tuple | int) – controls how many annotations are in the image. if it is a tuple, then it is interpreted as uniform random bounds
fg_scale (float) – standard deviation of foreground intensity
bg_scale (float) – standard deviation of background intensity
bg_intensity (float) – mean of background intensity
fg_intensity (float) – mean of foreground intensity
centerobj (bool | None) – if ‘pos’, then the first annotation will be in the center of the image, if ‘neg’, then no annotations will be in the center.
exact (bool) – if True, ensures that exactly the number of specified annots are generated.
newstyle (bool) – use new-sytle kwcoco format
rng (RandomState | int | None) – the random state used to seed the process
aux (bool | None) – if specified builds auxiliary channels
**kwargs – used for old backwards compatible argument names. gsize - alias for image_size
CommandLine
xdoctest -m kwcoco.demo.toydata_image demodata_toy_img:0 --profile xdoctest -m kwcoco.demo.toydata_image demodata_toy_img:1 --show
Example
>>> from kwcoco.demo.toydata_image import * # NOQA >>> img, anns = demodata_toy_img(image_size=(32, 32), anchors=[[.3, .3]], rng=0) >>> img['imdata'] = '<ndarray shape={}>'.format(img['imdata'].shape) >>> print('img = {}'.format(ub.urepr(img))) >>> print('anns = {}'.format(ub.urepr(anns, nl=2, cbr=True))) >>> # xdoctest: +IGNORE_WANT img = { 'height': 32, 'imdata': '<ndarray shape=(32, 32, 3)>', 'width': 32, } anns = [{'bbox': [15, 10, 9, 8], 'category_name': 'star', 'keypoints': [], 'segmentation': {'counts': '[`06j0000O20N1000e8', 'size': [32, 32]},}, {'bbox': [11, 20, 7, 7], 'category_name': 'star', 'keypoints': [], 'segmentation': {'counts': 'g;1m04N0O20N102L[=', 'size': [32, 32]},}, {'bbox': [4, 4, 8, 6], 'category_name': 'superstar', 'keypoints': [{'keypoint_category': 'left_eye', 'xy': [7.25, 6.8125]}, {'keypoint_category': 'right_eye', 'xy': [8.75, 6.8125]}], 'segmentation': {'counts': 'U4210j0300O01010O00MVO0ed0', 'size': [32, 32]},}, {'bbox': [3, 20, 6, 7], 'category_name': 'star', 'keypoints': [], 'segmentation': {'counts': 'g31m04N000002L[f0', 'size': [32, 32]},},]
Example
>>> # xdoctest: +REQUIRES(--show) >>> img, anns = demodata_toy_img(image_size=(172, 172), rng=None, aux=True) >>> print('anns = {}'.format(ub.urepr(anns, nl=1))) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(img['imdata'], pnum=(1, 2, 1), fnum=1) >>> auxdata = img['auxiliary'][0]['imdata'] >>> kwplot.imshow(auxdata, pnum=(1, 2, 2), fnum=1) >>> kwplot.show_if_requested()
Example
>>> # xdoctest: +REQUIRES(--show) >>> img, anns = demodata_toy_img(image_size=(172, 172), rng=None, aux=True) >>> print('anns = {}'.format(ub.urepr(anns, nl=1))) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(img['imdata'], pnum=(1, 2, 1), fnum=1) >>> auxdata = img['auxiliary'][0]['imdata'] >>> kwplot.imshow(auxdata, pnum=(1, 2, 2), fnum=1) >>> kwplot.show_if_requested()
Generates “toydata” for demo and testing purposes.
Loose image version of the toydata generators.
Note
The implementation of demodata_toy_img and demodata_toy_dset should be redone using the tools built for random_video_dset, which have more extensible implementations.
- kwcoco.demo.toydata_image.demodata_toy_dset(image_size=(600, 600), n_imgs=5, verbose=3, rng=0, newstyle=True, dpath=None, fpath=None, bundle_dpath=None, aux=None, use_cache=True, **kwargs)[source]¶
Create a toy detection problem
- Parameters
image_size (Tuple[int, int]) – The width and height of the generated images
n_imgs (int) – number of images to generate
rng (int | RandomState | None) – random number generator or seed. Defaults to 0.
newstyle (bool) – create newstyle kwcoco data. default=True
dpath (str | PathLike | None) – path to the directory that will contain the bundle, (defaults to a kwcoco cache dir). Ignored if bundle_dpath is given.
fpath (str | PathLike | None) – path to the kwcoco file. The parent will be the bundle if it is not specified. Should be a descendant of the dpath if specified.
bundle_dpath (str | PathLike | None) – path to the directory that will store images. If specified, dpath is ignored. If unspecified, a bundle will be written inside dpath.
aux (bool | None) – if True generates dummy auxiliary channels
verbose (int) – verbosity mode. default=3
use_cache (bool) – if True caches the generated json in the dpath. Default=True
**kwargs – used for old backwards compatible argument names gsize - alias for image_size
- Return type
- SeeAlso:
random_video_dset
CommandLine
xdoctest -m kwcoco.demo.toydata_image demodata_toy_dset --show
Todo
[ ] Non-homogeneous images sizes
Example
>>> from kwcoco.demo.toydata_image import * >>> import kwcoco >>> dset = demodata_toy_dset(image_size=(300, 300), aux=True, use_cache=False) >>> # xdoctest: +REQUIRES(--show) >>> print(ub.urepr(dset.dataset, nl=2)) >>> import kwplot >>> kwplot.autompl() >>> dset.show_image(gid=1) >>> ub.startfile(dset.bundle_dpath)
dset._tree()
>>> from kwcoco.demo.toydata_image import * >>> import kwcoco
dset = demodata_toy_dset(image_size=(300, 300), aux=True, use_cache=False) print(dset.imgs[1]) dset._tree()
- dset = demodata_toy_dset(image_size=(300, 300), aux=True, use_cache=False,
bundle_dpath=’test_bundle’)
print(dset.imgs[1]) dset._tree()
- dset = demodata_toy_dset(
image_size=(300, 300), aux=True, use_cache=False, dpath=’test_cache_dpath’)
- kwcoco.demo.toydata_image.demodata_toy_img(anchors=None, image_size=(104, 104), categories=None, n_annots=(0, 50), fg_scale=0.5, bg_scale=0.8, bg_intensity=0.1, fg_intensity=0.9, gray=True, centerobj=None, exact=False, newstyle=True, rng=None, aux=None, **kwargs)[source]¶
Generate a single image with non-overlapping toy objects of available categories.
Todo
- DEPRECATE IN FAVOR OF
random_single_video_dset + render_toy_image
- Parameters
anchors (ndarray | None) – Nx2 base width / height of boxes
gsize (Tuple[int, int]) – width / height of the image
categories (List[str] | None) – list of category names
n_annots (Tuple | int) – controls how many annotations are in the image. if it is a tuple, then it is interpreted as uniform random bounds
fg_scale (float) – standard deviation of foreground intensity
bg_scale (float) – standard deviation of background intensity
bg_intensity (float) – mean of background intensity
fg_intensity (float) – mean of foreground intensity
centerobj (bool | None) – if ‘pos’, then the first annotation will be in the center of the image, if ‘neg’, then no annotations will be in the center.
exact (bool) – if True, ensures that exactly the number of specified annots are generated.
newstyle (bool) – use new-sytle kwcoco format
rng (RandomState | int | None) – the random state used to seed the process
aux (bool | None) – if specified builds auxiliary channels
**kwargs – used for old backwards compatible argument names. gsize - alias for image_size
CommandLine
xdoctest -m kwcoco.demo.toydata_image demodata_toy_img:0 --profile xdoctest -m kwcoco.demo.toydata_image demodata_toy_img:1 --show
Example
>>> from kwcoco.demo.toydata_image import * # NOQA >>> img, anns = demodata_toy_img(image_size=(32, 32), anchors=[[.3, .3]], rng=0) >>> img['imdata'] = '<ndarray shape={}>'.format(img['imdata'].shape) >>> print('img = {}'.format(ub.urepr(img))) >>> print('anns = {}'.format(ub.urepr(anns, nl=2, cbr=True))) >>> # xdoctest: +IGNORE_WANT img = { 'height': 32, 'imdata': '<ndarray shape=(32, 32, 3)>', 'width': 32, } anns = [{'bbox': [15, 10, 9, 8], 'category_name': 'star', 'keypoints': [], 'segmentation': {'counts': '[`06j0000O20N1000e8', 'size': [32, 32]},}, {'bbox': [11, 20, 7, 7], 'category_name': 'star', 'keypoints': [], 'segmentation': {'counts': 'g;1m04N0O20N102L[=', 'size': [32, 32]},}, {'bbox': [4, 4, 8, 6], 'category_name': 'superstar', 'keypoints': [{'keypoint_category': 'left_eye', 'xy': [7.25, 6.8125]}, {'keypoint_category': 'right_eye', 'xy': [8.75, 6.8125]}], 'segmentation': {'counts': 'U4210j0300O01010O00MVO0ed0', 'size': [32, 32]},}, {'bbox': [3, 20, 6, 7], 'category_name': 'star', 'keypoints': [], 'segmentation': {'counts': 'g31m04N000002L[f0', 'size': [32, 32]},},]
Example
>>> # xdoctest: +REQUIRES(--show) >>> img, anns = demodata_toy_img(image_size=(172, 172), rng=None, aux=True) >>> print('anns = {}'.format(ub.urepr(anns, nl=1))) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(img['imdata'], pnum=(1, 2, 1), fnum=1) >>> auxdata = img['auxiliary'][0]['imdata'] >>> kwplot.imshow(auxdata, pnum=(1, 2, 2), fnum=1) >>> kwplot.show_if_requested()
Example
>>> # xdoctest: +REQUIRES(--show) >>> img, anns = demodata_toy_img(image_size=(172, 172), rng=None, aux=True) >>> print('anns = {}'.format(ub.urepr(anns, nl=1))) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(img['imdata'], pnum=(1, 2, 1), fnum=1) >>> auxdata = img['auxiliary'][0]['imdata'] >>> kwplot.imshow(auxdata, pnum=(1, 2, 2), fnum=1) >>> kwplot.show_if_requested()
Generates “toydata” for demo and testing purposes.
This is the video version of the toydata generator and should be prefered to the loose image version in toydata_image.
- kwcoco.demo.toydata_video.random_video_dset(num_videos=1, num_frames=2, num_tracks=2, anchors=None, image_size=(600, 600), verbose=3, render=False, aux=None, multispectral=False, multisensor=False, rng=None, dpath=None, max_speed=0.01, channels=None, background='noise', **kwargs)[source]¶
Create a toy Coco Video Dataset
- Parameters
num_videos (int) – number of videos
num_frames (int) – number of images per video
num_tracks (int) – number of tracks per video
image_size (Tuple[int, int]) – The width and height of the generated images
render (bool | dict) – if truthy the toy annotations are synthetically rendered. See
render_toy_image()
for details.rng (int | None | RandomState) – random seed / state
dpath (str | PathLike | None) – only used if render is truthy, place to write rendered images.
verbose (int) – verbosity mode, default=3
aux (bool | None) – if True generates dummy auxiliary channels
multispectral (bool) – similar to aux, but does not have the concept of a “main” image.
max_speed (float) – max speed of movers
channels (str | None) – experimental new way to get MSI with specific band distributions.
**kwargs – used for old backwards compatible argument names gsize - alias for image_size
- SeeAlso:
random_single_video_dset
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> dset = random_video_dset(render=True, num_videos=3, num_frames=2, >>> num_tracks=5, image_size=(128, 128)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> dset.show_image(1, doclf=True) >>> dset.show_image(2, doclf=True)
>>> from kwcoco.demo.toydata_video import * # NOQA dset = random_video_dset(render=False, num_videos=3, num_frames=2, num_tracks=10) dset._tree() dset.imgs[1]
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> # Test small images >>> dset = random_video_dset(render=True, num_videos=1, num_frames=1, >>> num_tracks=1, image_size=(2, 2)) >>> ann = dset.annots().peek() >>> print('ann = {}'.format(ub.urepr(ann, nl=2))) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> dset.show_image(1, doclf=True)
- kwcoco.demo.toydata_video.random_single_video_dset(image_size=(600, 600), num_frames=5, num_tracks=3, tid_start=1, gid_start=1, video_id=1, anchors=None, rng=None, render=False, dpath=None, autobuild=True, verbose=3, aux=None, multispectral=False, max_speed=0.01, channels=None, multisensor=False, **kwargs)[source]¶
Create the video scene layout of object positions.
Note
Does not render the data unless specified.
- Parameters
image_size (Tuple[int, int]) – size of the images
num_frames (int) – number of frames in this video
num_tracks (int) – number of tracks in this video
tid_start (int) – track-id start index, default=1
gid_start (int) – image-id start index, default=1
video_id (int) – video-id of this video, default=1
anchors (ndarray | None) – base anchor sizes of the object boxes we will generate.
rng (RandomState | None | int) – random state / seed
render (bool | dict) – if truthy, does the rendering according to provided params in the case of dict input.
autobuild (bool) – prebuild coco lookup indexes, default=True
verbose (int) – verbosity level
aux (bool | None | List[str]) – if specified generates auxiliary channels
multispectral (bool) – if specified simulates multispectral imagry This is similar to aux, but has no “main” file.
max_speed (float) – max speed of movers
channels (str | None | kwcoco.ChannelSpec) – if specified generates multispectral images with dummy channels
multisensor (bool) –
- if True, generates demodata from “multiple sensors”, in
other words, observations may have different “bands”.
**kwargs – used for old backwards compatible argument names gsize - alias for image_size
Todo
[ ] Need maximum allowed object overlap measure
[ ] Need better parameterized path generation
Example
>>> import numpy as np >>> from kwcoco.demo.toydata_video import random_single_video_dset >>> anchors = np.array([ [0.3, 0.3], [0.1, 0.1]]) >>> dset = random_single_video_dset(render=True, num_frames=5, >>> num_tracks=3, anchors=anchors, >>> max_speed=0.2, rng=91237446) >>> # xdoctest: +REQUIRES(--show) >>> # Show the tracks in a single image >>> import kwplot >>> import kwimage >>> #kwplot.autosns() >>> kwplot.autoplt() >>> # Group track boxes and centroid locations >>> paths = [] >>> track_boxes = [] >>> for tid, aids in dset.index.trackid_to_aids.items(): >>> boxes = dset.annots(aids).boxes.to_cxywh() >>> path = boxes.data[:, 0:2] >>> paths.append(path) >>> track_boxes.append(boxes) >>> # Plot the tracks over time >>> ax = kwplot.figure(fnum=1, doclf=1).gca() >>> colors = kwimage.Color.distinct(len(track_boxes)) >>> for i, boxes in enumerate(track_boxes): >>> color = colors[i] >>> path = boxes.data[:, 0:2] >>> boxes.draw(color=color, centers={'radius': 0.01}, alpha=0.8) >>> ax.plot(path.T[0], path.T[1], 'x-', color=color) >>> ax.invert_yaxis() >>> ax.set_title('Track locations flattened over time') >>> # Plot the image sequence >>> fig = kwplot.figure(fnum=2, doclf=1) >>> gids = list(dset.imgs.keys()) >>> pnums = kwplot.PlotNums(nRows=1, nSubplots=len(gids)) >>> for gid in gids: >>> dset.show_image(gid, pnum=pnums(), fnum=2, title=f'Image {gid}', show_aid=0, setlim='image') >>> fig.suptitle('Video Frames') >>> fig.set_size_inches(15.4, 4.0) >>> fig.tight_layout() >>> kwplot.show_if_requested()
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> anchors = np.array([ [0.2, 0.2], [0.1, 0.1]]) >>> gsize = np.array([(600, 600)]) >>> print(anchors * gsize) >>> dset = random_single_video_dset(render=True, num_frames=10, >>> anchors=anchors, num_tracks=10, >>> image_size='random') >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> plt = kwplot.autoplt() >>> plt.clf() >>> gids = list(dset.imgs.keys()) >>> pnums = kwplot.PlotNums(nSubplots=len(gids)) >>> for gid in gids: >>> dset.show_image(gid, pnum=pnums(), fnum=1, title=f'Image {gid}') >>> kwplot.show_if_requested()
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> dset = random_single_video_dset(num_frames=10, num_tracks=10, aux=True) >>> assert 'auxiliary' in dset.imgs[1] >>> assert dset.imgs[1]['auxiliary'][0]['channels'] >>> assert dset.imgs[1]['auxiliary'][1]['channels']
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> multispectral = True >>> dset = random_single_video_dset(num_frames=1, num_tracks=1, multispectral=True) >>> dset._check_json_serializable() >>> dset.dataset['images'] >>> assert dset.imgs[1]['auxiliary'][1]['channels'] >>> # test that we can render >>> render_toy_dataset(dset, rng=0, dpath=None, renderkw={})
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> dset = random_single_video_dset(num_frames=4, num_tracks=1, multispectral=True, multisensor=True, image_size='random', rng=2338) >>> dset._check_json_serializable() >>> assert dset.imgs[1]['auxiliary'][1]['channels'] >>> # Print before and after render >>> #print('multisensor-images = {}'.format(ub.urepr(dset.dataset['images'], nl=-2))) >>> #print('multisensor-images = {}'.format(ub.urepr(dset.dataset, nl=-2))) >>> print(ub.hash_data(dset.dataset)) >>> # test that we can render >>> render_toy_dataset(dset, rng=0, dpath=None, renderkw={}) >>> #print('multisensor-images = {}'.format(ub.urepr(dset.dataset['images'], nl=-2))) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> from kwcoco.demo.toydata_video import _draw_video_sequence # NOQA >>> gids = [1, 2, 3, 4] >>> final = _draw_video_sequence(dset, gids) >>> print('dset.fpath = {!r}'.format(dset.fpath)) >>> kwplot.imshow(final)
- kwcoco.demo.toydata_video._draw_video_sequence(dset, gids)[source]¶
Helper to draw a multi-sensor sequence
- kwcoco.demo.toydata_video.render_toy_dataset(dset, rng, dpath=None, renderkw=None, verbose=0)[source]¶
Create toydata_video renderings for a preconstructed coco dataset.
- Parameters
dset (kwcoco.CocoDataset) – A dataset that contains special “renderable” annotations. (e.g. the demo shapes). Each image can contain special fields that influence how an image will be rendered.
Currently this process is simple, it just creates a noisy image with the shapes superimposed over where they should exist as indicated by the annotations. In the future this may become more sophisticated.
Each item in dset.dataset[‘images’] will be modified to add the “file_name” field indicating where the rendered data is writen.
rng (int | None | RandomState) – random state
dpath (str | PathLike | None) – The location to write the images to. If unspecified, it is written to the rendered folder inside the kwcoco cache directory.
renderkw (dict | None) – See
render_toy_image()
for details. Also takes imwrite keywords args only handled in this function. TODO better docs.
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> import kwarray >>> rng = None >>> rng = kwarray.ensure_rng(rng) >>> num_tracks = 3 >>> dset = random_video_dset(rng=rng, num_videos=3, num_frames=5, >>> num_tracks=num_tracks, image_size=(128, 128)) >>> dset = render_toy_dataset(dset, rng) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> plt = kwplot.autoplt() >>> plt.clf() >>> gids = list(dset.imgs.keys()) >>> pnums = kwplot.PlotNums(nSubplots=len(gids), nRows=num_tracks) >>> for gid in gids: >>> dset.show_image(gid, pnum=pnums(), fnum=1, title=False) >>> pnums = kwplot.PlotNums(nSubplots=len(gids))
- kwcoco.demo.toydata_video.render_toy_image(dset, gid, rng=None, renderkw=None)[source]¶
Modifies dataset inplace, rendering synthetic annotations.
This does not write to disk. Instead this writes to placeholder values in the image dictionary.
- Parameters
dset (kwcoco.CocoDataset) – coco dataset with renderable anotations / images
gid (int) – image to render
rng (int | None | RandomState) – random state
renderkw (dict | None) – rendering config gray (boo): gray or color images fg_scale (float): foreground noisyness (gauss std) bg_scale (float): background noisyness (gauss std) fg_intensity (float): foreground brightness (gauss mean) bg_intensity (float): background brightness (gauss mean) newstyle (bool): use new kwcoco datastructure formats with_kpts (bool): include keypoint info with_sseg (bool): include segmentation info
- Returns
the inplace-modified image dictionary
- Return type
Dict
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> image_size=(600, 600) >>> num_frames=5 >>> verbose=3 >>> rng = None >>> import kwarray >>> rng = kwarray.ensure_rng(rng) >>> aux = 'mx' >>> dset = random_single_video_dset( >>> image_size=image_size, num_frames=num_frames, verbose=verbose, aux=aux, rng=rng) >>> print('dset.dataset = {}'.format(ub.urepr(dset.dataset, nl=2))) >>> gid = 1 >>> renderkw = {} >>> renderkw['background'] = 'parrot' >>> render_toy_image(dset, gid, rng, renderkw=renderkw) >>> img = dset.imgs[gid] >>> canvas = img['imdata'] >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(canvas, doclf=True, pnum=(1, 2, 1)) >>> dets = dset.annots(gid=gid).detections >>> dets.draw()
>>> auxdata = img['auxiliary'][0]['imdata'] >>> aux_canvas = false_color(auxdata) >>> kwplot.imshow(aux_canvas, pnum=(1, 2, 2)) >>> _ = dets.draw()
>>> # xdoctest: +REQUIRES(--show) >>> img, anns = demodata_toy_img(image_size=(172, 172), rng=None, aux=True) >>> print('anns = {}'.format(ub.urepr(anns, nl=1))) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(img['imdata'], pnum=(1, 2, 1), fnum=1) >>> auxdata = img['auxiliary'][0]['imdata'] >>> kwplot.imshow(auxdata, pnum=(1, 2, 2), fnum=1) >>> kwplot.show_if_requested()
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> multispectral = True >>> dset = random_single_video_dset(num_frames=1, num_tracks=1, multispectral=True) >>> gid = 1 >>> dset.imgs[gid] >>> rng = kwarray.ensure_rng(0) >>> renderkw = {'with_sseg': True} >>> img = render_toy_image(dset, gid, rng=rng, renderkw=renderkw)
- kwcoco.demo.toydata_video.render_foreground(imdata, chan_to_auxinfo, dset, annots, catpats, with_sseg, with_kpts, dims, newstyle, gray, rng)[source]¶
Renders demo annoations on top of a demo background
- kwcoco.demo.toydata_video.render_background(img, rng, gray, bg_intensity, bg_scale, imgspace_background=None)[source]¶
- kwcoco.demo.toydata_video.false_color(twochan)[source]¶
TODO: the function ensure_false_color will eventually be ported to kwimage use that instead.
- kwcoco.demo.toydata_video.random_multi_object_path(num_objects, num_frames, rng=None, max_speed=0.01)[source]¶
- kwcoco.demo.toydata_video.random_path(num, degree=1, dimension=2, rng=None, mode='boid')[source]¶
Create a random path using a somem ethod curve.
- Parameters
num (int) – number of points in the path
degree (int) – degree of curvieness of the path, default=1
dimension (int) – number of spatial dimensions, default=2
mode (str) – can be boid, walk, or bezier
rng (RandomState | None | int) – seed, default=None
References
https://github.com/dhermes/bezier
Example
>>> from kwcoco.demo.toydata_video import * # NOQA >>> num = 10 >>> dimension = 2 >>> degree = 3 >>> rng = None >>> path = random_path(num, degree, dimension, rng, mode='boid') >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> plt = kwplot.autoplt() >>> kwplot.multi_plot(xdata=path[:, 0], ydata=path[:, 1], fnum=1, doclf=1, xlim=(0, 1), ylim=(0, 1)) >>> kwplot.show_if_requested()
Example
>>> # xdoctest: +REQUIRES(--3d) >>> # xdoctest: +REQUIRES(module:bezier) >>> import kwarray >>> import kwplot >>> plt = kwplot.autoplt() >>> # >>> num= num_frames = 100 >>> rng = kwarray.ensure_rng(0) >>> # >>> from kwcoco.demo.toydata_video import * # NOQA >>> paths = [] >>> paths.append(random_path(num, degree=3, dimension=3, mode='bezier')) >>> paths.append(random_path(num, degree=2, dimension=3, mode='bezier')) >>> paths.append(random_path(num, degree=4, dimension=3, mode='bezier')) >>> # >>> from mpl_toolkits.mplot3d import Axes3D # NOQA >>> ax = plt.gca(projection='3d') >>> ax.cla() >>> # >>> for path in paths: >>> time = np.arange(len(path)) >>> ax.plot(time, path.T[0] * 1, path.T[1] * 1, 'o-') >>> ax.set_xlim(0, num_frames) >>> ax.set_ylim(-.01, 1.01) >>> ax.set_zlim(-.01, 1.01) >>> ax.set_xlabel('x') >>> ax.set_ylabel('y') >>> ax.set_zlabel('z')
- class kwcoco.demo.toypatterns.CategoryPatterns(categories=None, fg_scale=0.5, fg_intensity=0.9, rng=None)[source]¶
Bases:
object
Example
>>> from kwcoco.demo.toypatterns import * # NOQA >>> self = CategoryPatterns.coerce() >>> chip = np.zeros((100, 100, 3)) >>> offset = (20, 10) >>> dims = (160, 140) >>> info = self.random_category(chip, offset, dims) >>> print('info = {}'.format(ub.urepr(info, nl=1))) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(info['data'], pnum=(1, 2, 1), fnum=1, title='chip-space') >>> kpts = kwimage.Points._from_coco(info['keypoints']) >>> kpts.translate(-np.array(offset)).draw(radius=3) >>> ##### >>> mask = kwimage.Mask.coerce(info['segmentation']) >>> kwplot.imshow(mask.to_c_mask().data, pnum=(1, 2, 2), fnum=1, title='img-space') >>> kpts.draw(radius=3) >>> kwplot.show_if_requested()
- Parameters
categories (List[Dict] | None) – List of coco category dictionaries
- _default_categories = [{'name': 'background', 'id': 0, 'keypoints': []}, {'name': 'box', 'id': 1, 'supercategory': 'vector', 'keypoints': []}, {'name': 'circle', 'id': 2, 'keypoints': [], 'supercategory': 'vector'}, {'name': 'star', 'id': 3, 'supercategory': 'vector', 'keypoints': []}, {'name': 'octagon', 'id': 4, 'supercategory': 'vector', 'keypoints': []}, {'name': 'diamond', 'id': 5, 'supercategory': 'vector', 'keypoints': []}, {'name': 'superstar', 'id': 6, 'supercategory': 'raster', 'keypoints': ['left_eye', 'right_eye']}, {'name': 'eff', 'id': 7, 'supercategory': 'raster', 'keypoints': ['top_tip', 'mid_tip', 'bot_tip']}, {'name': 'raster', 'id': 8, 'supercategory': 'raster', 'keypoints': []}, {'name': 'vector', 'id': 9, 'supercategory': 'shape', 'keypoints': []}, {'name': 'shape', 'id': 10, 'keypoints': []}]¶
- _default_keypoint_categories = [{'name': 'left_eye', 'id': 1, 'reflection_id': 2}, {'name': 'right_eye', 'id': 2, 'reflection_id': 1}, {'name': 'top_tip', 'id': 3, 'reflection_id': None}, {'name': 'mid_tip', 'id': 4, 'reflection_id': None}, {'name': 'bot_tip', 'id': 5, 'reflection_id': None}]¶
- _default_catnames = ['star', 'eff', 'superstar']¶
- classmethod coerce(data=None, **kwargs)[source]¶
Construct category patterns from either defaults or only with specific categories. Can accept either an existig category pattern object, a list of known catnames, or mscoco category dictionaries.
Example
>>> data = ['superstar'] >>> self = CategoryPatterns.coerce(data)
- random_category(chip, xy_offset=None, dims=None, newstyle=True, size=None)[source]¶
Example
>>> from kwcoco.demo.toypatterns import * # NOQA >>> self = CategoryPatterns.coerce(['superstar']) >>> chip = np.random.rand(64, 64) >>> info = self.random_category(chip)
- render_category(cname, chip, xy_offset=None, dims=None, newstyle=True, size=None)[source]¶
Example
>>> from kwcoco.demo.toypatterns import * # NOQA >>> self = CategoryPatterns.coerce(['superstar']) >>> chip = np.random.rand(64, 64) >>> info = self.render_category('superstar', chip, newstyle=True) >>> print('info = {}'.format(ub.urepr(info, nl=-1))) >>> info = self.render_category('superstar', chip, newstyle=False) >>> print('info = {}'.format(ub.urepr(info, nl=-1)))
Example
>>> from kwcoco.demo.toypatterns import * # NOQA >>> self = CategoryPatterns.coerce(['superstar']) >>> chip = None >>> dims = (64, 64) >>> info = self.render_category('superstar', chip, newstyle=True, dims=dims, size=dims) >>> print('info = {}'.format(ub.urepr(info, nl=-1)))
- _todo_refactor_geometric_info(cname, xy_offset, dims)[source]¶
This function is used to populate kpts and sseg information in the autogenerated coco dataset before rendering. It is redundant with other functionality.
TODO: rectify with _from_elem
Example
>>> self = CategoryPatterns.coerce(['superstar']) >>> dims = (64, 64) >>> cname = 'superstar' >>> xy_offset = None >>> self._todo_refactor_geometric_info(cname, xy_offset, dims)
Example
>>> from kwcoco.demo.toypatterns import * # NOQA >>> cname = 'star' >>> xy_offset = None >>> self = CategoryPatterns.coerce([cname]) >>> for d in range(0, 5): ... dims = (d, d) ... info = self._todo_refactor_geometric_info(cname, xy_offset, dims) ... print(info['segmentation'].data)
Module contents¶
kwcoco.examples package¶
Submodules¶
Module contents¶
kwcoco.metrics package¶
Submodules¶
Todo
- [ ] _fast_pdist_priority: Look at absolute difference in sibling entropy
when deciding whether to go up or down in the tree.
- [ ] medschool applications true-pred matching (applicant proposing) fast
algorithm.
- [ ] Maybe looping over truth rather than pred is faster? but it makes you
have to combine pred score / ious, which is weird.
- [x] preallocate ndarray and use hstack to build confusion vectors?
doesn’t help
- [ ] relevant classes / classes / classes-of-interest we care about needs
to be a first class member of detection metrics.
- [ ] Add parameter that allows one prediction to “match” to more than one
truth object. (example: we have a duck detector problem and all the ducks in a row are annotated as separate object, and we only care about getting the group)
- kwcoco.metrics.assignment._assign_confusion_vectors(true_dets, pred_dets, bg_weight=1.0, iou_thresh=0.5, bg_cidx=-1, bias=0.0, classes=None, compat='all', prioritize='iou', ignore_classes='ignore', max_dets=None)[source]¶
Create confusion vectors for detections by assigning to ground true boxes
Given predictions and truth for an image return (y_pred, y_true, y_score), which is suitable for sklearn classification metrics
- Parameters
true_dets (Detections) – groundtruth with boxes, classes, and weights
pred_dets (Detections) – predictions with boxes, classes, and scores
iou_thresh (float, default=0.5) – bounding box overlap iou threshold required for assignment
bias (float, default=0.0) – for computing bounding box overlap, either 1 or 0
gids (List[int], default=None) – which subset of images ids to compute confusion metrics on. If not specified all images are used.
compat (str, default=’all’) – can be (‘ancestors’ | ‘mutex’ | ‘all’). determines which pred boxes are allowed to match which true boxes. If ‘mutex’, then pred boxes can only match true boxes of the same class. If ‘ancestors’, then pred boxes can match true boxes that match or have a coarser label. If ‘all’, then any pred can match any true, regardless of its category label.
prioritize (str, default=’iou’) – can be (‘iou’ | ‘class’ | ‘correct’) determines which box to assign to if mutiple true boxes overlap a predicted box. if prioritize is iou, then the true box with maximum iou (above iou_thresh) will be chosen. If prioritize is class, then it will prefer matching a compatible class above a higher iou. If prioritize is correct, then ancestors of the true class are preferred over descendents of the true class, over unreleated classes.
bg_cidx (int, default=-1) – The index of the background class. The index used in the truth column when a predicted bounding box does not match any true bounding box.
classes (List[str] | kwcoco.CategoryTree) – mapping from class indices to class names. Can also contain class heirarchy information.
ignore_classes (str | List[str]) – class name(s) indicating ignore regions
max_dets (int) – maximum number of detections to consider
Todo
[ ] This is a bottleneck function. An implementation in C / C++ /
Cython would likely improve the overall system.
- [ ] Implement crowd truth. Allow multiple predictions to match any
truth objet marked as “iscrowd”.
- Returns
- with relevant confusion vectors. This keys of this dict can be
interpreted as columns of a data frame. The txs / pxs columns represent the indexes of the true / predicted annotations that were assigned as matching. Additionally each row also contains the true and predicted class index, the predicted score, the true weight and the iou of the true and predicted boxes. A txs value of -1 means that the predicted box was not assigned to a true annotation and a pxs value of -1 means that the true annotation was not assigne to any predicted annotation.
- Return type
Example
>>> # xdoctest: +REQUIRES(module:pandas) >>> import pandas as pd >>> import kwimage >>> # Given a raw numpy representation construct Detection wrappers >>> true_dets = kwimage.Detections( >>> boxes=kwimage.Boxes(np.array([ >>> [ 0, 0, 10, 10], [10, 0, 20, 10], >>> [10, 0, 20, 10], [20, 0, 30, 10]]), 'tlbr'), >>> weights=np.array([1, 0, .9, 1]), >>> class_idxs=np.array([0, 0, 1, 2])) >>> pred_dets = kwimage.Detections( >>> boxes=kwimage.Boxes(np.array([ >>> [6, 2, 20, 10], [3, 2, 9, 7], >>> [3, 9, 9, 7], [3, 2, 9, 7], >>> [2, 6, 7, 7], [20, 0, 30, 10]]), 'tlbr'), >>> scores=np.array([.5, .5, .5, .5, .5, .5]), >>> class_idxs=np.array([0, 0, 1, 2, 0, 1])) >>> bg_weight = 1.0 >>> compat = 'all' >>> iou_thresh = 0.5 >>> bias = 0.0 >>> import kwcoco >>> classes = kwcoco.CategoryTree.from_mutex(list(range(3))) >>> bg_cidx = -1 >>> y = _assign_confusion_vectors(true_dets, pred_dets, bias=bias, >>> bg_weight=bg_weight, iou_thresh=iou_thresh, >>> compat=compat) >>> y = pd.DataFrame(y) >>> print(y) # xdoc: +IGNORE_WANT pred true score weight iou txs pxs 0 1 2 0.5000 1.0000 1.0000 3 5 1 0 -1 0.5000 1.0000 -1.0000 -1 4 2 2 -1 0.5000 1.0000 -1.0000 -1 3 3 1 -1 0.5000 1.0000 -1.0000 -1 2 4 0 -1 0.5000 1.0000 -1.0000 -1 1 5 0 0 0.5000 0.0000 0.6061 1 0 6 -1 0 0.0000 1.0000 -1.0000 0 -1 7 -1 1 0.0000 0.9000 -1.0000 2 -1
Example
>>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics.assignment import _assign_confusion_vectors >>> import pandas as pd >>> import ubelt as ub >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo(nimgs=1, nclasses=8, >>> nboxes=(0, 20), n_fp=20, >>> box_noise=.2, cls_noise=.3) >>> classes = dmet.classes >>> gid = ub.peek(dmet.gid_to_pred_dets) >>> true_dets = dmet.true_detections(gid) >>> pred_dets = dmet.pred_detections(gid) >>> y = _assign_confusion_vectors(true_dets, pred_dets, >>> classes=dmet.classes, >>> compat='all', prioritize='class') >>> y = pd.DataFrame(y) >>> print(y) # xdoc: +IGNORE_WANT >>> y = _assign_confusion_vectors(true_dets, pred_dets, >>> classes=dmet.classes, >>> compat='ancestors', iou_thresh=.5) >>> y = pd.DataFrame(y) >>> print(y) # xdoc: +IGNORE_WANT
- kwcoco.metrics.assignment._critical_loop(true_dets, pred_dets, iou_lookup, isvalid_lookup, cx_to_matchable_txs, bg_weight, prioritize, iou_thresh_, pdist_priority, cx_to_ancestors, bg_cidx, ignore_classes, max_dets)[source]¶
- kwcoco.metrics.assignment._fast_pdist_priority(classes, prioritize, _cache={})[source]¶
Custom priority computation. Needs some vetting.
This is the priority used when deciding which prediction to assign to which truth.
Todo
- [ ] Look at absolute difference in sibling entropy when deciding
whether to go up or down in the tree.
- kwcoco.metrics.assignment._filter_ignore_regions(true_dets, pred_dets, ioaa_thresh=0.5, ignore_classes='ignore')[source]¶
Determine which true and predicted detections should be ignored.
- Parameters
true_dets (Detections)
pred_dets (Detections)
ioaa_thresh (float) – intersection over other area thresh for ignoring a region.
- Returns
- flags indicating which true and predicted
detections should be ignored.
- Return type
Tuple[ndarray, ndarray]
Example
>>> from kwcoco.metrics.assignment import * # NOQA >>> from kwcoco.metrics.assignment import _filter_ignore_regions >>> import kwimage >>> pred_dets = kwimage.Detections.random(classes=['a', 'b', 'c']) >>> true_dets = kwimage.Detections.random( >>> segmentations=True, classes=['a', 'b', 'c', 'ignore']) >>> ignore_classes = {'ignore', 'b'} >>> ioaa_thresh = 0.5 >>> print('true_dets = {!r}'.format(true_dets)) >>> print('pred_dets = {!r}'.format(pred_dets)) >>> flags1, flags2 = _filter_ignore_regions( >>> true_dets, pred_dets, ioaa_thresh=ioaa_thresh, ignore_classes=ignore_classes) >>> print('flags1 = {!r}'.format(flags1)) >>> print('flags2 = {!r}'.format(flags2))
>>> flags3, flags4 = _filter_ignore_regions( >>> true_dets, pred_dets, ioaa_thresh=ioaa_thresh, >>> ignore_classes={c.upper() for c in ignore_classes}) >>> assert np.all(flags1 == flags3) >>> assert np.all(flags2 == flags4)
- kwcoco.metrics.clf_report.classification_report(y_true, y_pred, target_names=None, sample_weight=None, verbose=False, remove_unsupported=False, log=None, ascii_only=False)[source]¶
Computes a classification report which is a collection of various metrics commonly used to evaulate classification quality. This can handle binary and multiclass settings.
Note that this function does not accept probabilities or scores and must instead act on final decisions. See ovr_classification_report for a probability based report function using a one-vs-rest strategy.
This emulates the bm(cm) Matlab script [MatlabBM] written by David Powers that is used for computing bookmaker, markedness, and various other scores and is based on the paper [PowersMetrics].
References
- PowersMetrics
- MatlabBM
https://www.mathworks.com/matlabcentral/fileexchange/5648-bm-cm-?requestedDomain=www.mathworks.com
- MulticlassMCC
Jurman, Riccadonna, Furlanello, (2012). A Comparison of MCC and CEN Error Measures in MultiClass Prediction
- Parameters
y_true (ndarray) – true labels for each item
y_pred (ndarray) – predicted labels for each item
target_names (List | None) – mapping from label to category name
sample_weight (ndarray | None) – weight for each item
verbose (int) – print if True
log (callable | None) – print or logging function
remove_unsupported (bool) – removes categories that have no support. Defaults to False.
ascii_only (bool) – if True dont use unicode characters. if the environ ASCII_ONLY is present this is forced to True and cannot be undone. Defaults to False.
Example
>>> # xdoctest: +IGNORE_WANT >>> # xdoctest: +REQUIRES(module:sklearn) >>> # xdoctest: +REQUIRES(module:pandas) >>> y_true = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3] >>> y_pred = [1, 2, 1, 3, 1, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 1, 3] >>> target_names = None >>> sample_weight = None >>> report = classification_report(y_true, y_pred, verbose=0, ascii_only=1) >>> print(report['confusion']) pred 1 2 3 Σr real 1 3 1 1 5 2 0 4 1 5 3 1 1 6 8 Σp 4 6 8 18 >>> print(report['metrics']) metric precision recall fpr markedness bookmaker mcc support class 1 0.7500 0.6000 0.0769 0.6071 0.5231 0.5635 5 2 0.6667 0.8000 0.1538 0.5833 0.6462 0.6139 5 3 0.7500 0.7500 0.2000 0.5500 0.5500 0.5500 8 combined 0.7269 0.7222 0.1530 0.5751 0.5761 0.5758 18
Example
>>> # xdoctest: +IGNORE_WANT >>> # xdoctest: +REQUIRES(module:sklearn) >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics.clf_report import * # NOQA >>> y_true = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3] >>> y_pred = [1, 2, 1, 3, 1, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 1, 3] >>> target_names = None >>> sample_weight = None >>> logs = [] >>> report = classification_report(y_true, y_pred, verbose=1, ascii_only=True, log=logs.append) >>> print('\n'.join(logs))
- kwcoco.metrics.clf_report.ovr_classification_report(mc_y_true, mc_probs, target_names=None, sample_weight=None, metrics=None, verbose=0, remove_unsupported=False, log=None)[source]¶
One-vs-rest classification report
- Parameters
mc_y_true (ndarray) – multiclass truth labels (integer label format). Shape [N].
mc_probs (ndarray) – multiclass probabilities for each class. Shape [N x C].
target_names (Dict[int, str] | None) – mapping from int label to string name
sample_weight (ndarray | None) – weight for each item. Shape [N].
metrics (List[str] | None) – names of metrics to compute
Example
>>> # xdoctest: +IGNORE_WANT >>> # xdoctest: +REQUIRES(module:sklearn) >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics.clf_report import * # NOQA >>> y_true = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0] >>> y_probs = np.random.rand(len(y_true), max(y_true) + 1) >>> target_names = None >>> sample_weight = None >>> verbose = True >>> report = ovr_classification_report(y_true, y_probs) >>> print(report['ave']) auc 0.6541 ap 0.6824 kappa 0.0963 mcc 0.1002 brier 0.2214 dtype: float64 >>> print(report['ovr']) auc ap kappa mcc brier support weight 0 0.6062 0.6161 0.0526 0.0598 0.2608 8 0.4444 1 0.5846 0.6014 0.0000 0.0000 0.2195 5 0.2778 2 0.8000 0.8693 0.2623 0.2652 0.1602 5 0.2778
Classes that store accumulated confusion measures (usually derived from confusion vectors).
- For each chosen threshold value:
thresholds[i] - the i-th threshold value
The primary data we manipulate are arrays of “confusion” counts, i.e.
tp_count[i] - true positives at the i-th threshold
fp_count[i] - false positives at the i-th threshold
fn_count[i] - false negatives at the i-th threshold
tn_count[i] - true negatives at the i-th threshold
- class kwcoco.metrics.confusion_measures.Measures(info)[source]¶
-
Holds accumulated confusion counts, and derived measures
Example
>>> from kwcoco.metrics.confusion_vectors import BinaryConfusionVectors # NOQA >>> binvecs = BinaryConfusionVectors.demo(n=100, p_error=0.5) >>> self = binvecs.measures() >>> print('self = {!r}'.format(self)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> self.draw(doclf=True) >>> self.draw(key='pr', pnum=(1, 2, 1)) >>> self.draw(key='roc', pnum=(1, 2, 2)) >>> kwplot.show_if_requested()
- property catname¶
- draw(key=None, prefix='', **kw)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors # NOQA >>> cfsn_vecs = ConfusionVectors.demo() >>> ovr_cfsn = cfsn_vecs.binarize_ovr(keyby='name') >>> self = ovr_cfsn.measures()['perclass'] >>> self.draw('mcc', doclf=True, fnum=1) >>> self.draw('pr', doclf=1, fnum=2) >>> self.draw('roc', doclf=1, fnum=3)
- summary_plot(fnum=1, title='', subplots='auto')[source]¶
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors # NOQA >>> cfsn_vecs = ConfusionVectors.demo(n=3, p_error=0.5) >>> binvecs = cfsn_vecs.binarize_classless() >>> self = binvecs.measures() >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> self.summary_plot() >>> kwplot.show_if_requested()
- classmethod demo(**kwargs)[source]¶
Create a demo Measures object for testing / demos
- Parameters
**kwargs – passed to
BinaryConfusionVectors.demo()
. some valid keys are: n, rng, p_rue, p_error, p_miss.
- classmethod combine(tocombine, precision=None, growth=None, thresh_bins=None)[source]¶
Combine binary confusion metrics
- Parameters
tocombine (List[Measures]) – a list of measures to combine into one
precision (int | None) – If specified rounds thresholds to this precision which can prevent a RAM explosion when combining a large number of measures. However, this is a lossy operation and will impact the underlying scores. NOTE: use
growth
instead.growth (int | None) – if specified this limits how much the resulting measures are allowed to grow by. If None, growth is unlimited. Otherwise, if growth is ‘max’, the growth is limited to the maximum length of an input. We might make this more numerical in the future.
thresh_bins (int | None) – Force this many threshold bins.
- Returns
kwcoco.metrics.confusion_measures.Measures
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> measures1 = Measures.demo(n=15) >>> measures2 = measures1 >>> tocombine = [measures1, measures2] >>> new_measures = Measures.combine(tocombine) >>> new_measures.reconstruct() >>> print('new_measures = {!r}'.format(new_measures)) >>> print('measures1 = {!r}'.format(measures1)) >>> print('measures2 = {!r}'.format(measures2)) >>> print(ub.urepr(measures1.__json__(), nl=1, sort=0)) >>> print(ub.urepr(measures2.__json__(), nl=1, sort=0)) >>> print(ub.urepr(new_measures.__json__(), nl=1, sort=0)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.figure(fnum=1) >>> new_measures.summary_plot() >>> measures1.summary_plot() >>> measures1.draw('roc') >>> measures2.draw('roc') >>> new_measures.draw('roc')
Example
>>> # Demonstrate issues that can arrise from choosing a precision >>> # that is too low when combining metrics. Breakpoints >>> # between different metrics can get muddled, but choosing a >>> # precision that is too high can overwhelm memory. >>> from kwcoco.metrics.confusion_measures import * # NOQA >>> base = ub.map_vals(np.asarray, { >>> 'tp_count': [ 1, 1, 2, 2, 2, 2, 3], >>> 'fp_count': [ 0, 1, 1, 2, 3, 4, 5], >>> 'fn_count': [ 1, 1, 0, 0, 0, 0, 0], >>> 'tn_count': [ 5, 4, 4, 3, 2, 1, 0], >>> 'thresholds': [.0, .0, .0, .0, .0, .0, .0], >>> }) >>> # Make tiny offsets to thresholds >>> rng = kwarray.ensure_rng(0) >>> n = len(base['thresholds']) >>> offsets = [ >>> sorted(rng.rand(n) * 10 ** -rng.randint(4, 7))[::-1] >>> for _ in range(20) >>> ] >>> tocombine = [] >>> for offset in offsets: >>> base_n = base.copy() >>> base_n['thresholds'] += offset >>> measures_n = Measures(base_n).reconstruct() >>> tocombine.append(measures_n) >>> for precision in [6, 5, 2]: >>> combo = Measures.combine(tocombine, precision=precision).reconstruct() >>> print('precision = {!r}'.format(precision)) >>> print('combo = {}'.format(ub.urepr(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> for growth in [None, 'max', 'log', 'root', 'half']: >>> combo = Measures.combine(tocombine, growth=growth).reconstruct() >>> print('growth = {!r}'.format(growth)) >>> print('combo = {}'.format(ub.urepr(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> #print(combo.counts().pandas())
Example
>>> # Test case: combining a single measures should leave it unchanged >>> from kwcoco.metrics.confusion_measures import * # NOQA >>> measures = Measures.demo(n=40, p_true=0.2, p_error=0.4, p_miss=0.6) >>> df1 = measures.counts().pandas().fillna(0) >>> print(df1) >>> tocombine = [measures] >>> combo = Measures.combine(tocombine) >>> df2 = combo.counts().pandas().fillna(0) >>> print(df2) >>> assert np.allclose(df1, df2)
>>> combo = Measures.combine(tocombine, thresh_bins=2) >>> df3 = combo.counts().pandas().fillna(0) >>> print(df3)
>>> # I am NOT sure if this is correct or not >>> thresh_bins = 20 >>> combo = Measures.combine(tocombine, thresh_bins=thresh_bins) >>> df4 = combo.counts().pandas().fillna(0) >>> print(df4)
>>> combo = Measures.combine(tocombine, thresh_bins=np.linspace(0, 1, 20)) >>> df4 = combo.counts().pandas().fillna(0) >>> print(df4)
assert np.allclose(combo[‘thresholds’], measures[‘thresholds’]) assert np.allclose(combo[‘fp_count’], measures[‘fp_count’]) assert np.allclose(combo[‘tp_count’], measures[‘tp_count’]) assert np.allclose(combo[‘tp_count’], measures[‘tp_count’])
globals().update(xdev.get_func_kwargs(Measures.combine))
Example
>>> # Test degenerate case >>> from kwcoco.metrics.confusion_measures import * # NOQA >>> tocombine = [ >>> {'fn_count': [0.0], 'fp_count': [359980.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7747.0]}, >>> {'fn_count': [0.0], 'fp_count': [360849.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [424.0]}, >>> {'fn_count': [0.0], 'fp_count': [367003.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [991.0]}, >>> {'fn_count': [0.0], 'fp_count': [367976.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [1017.0]}, >>> {'fn_count': [0.0], 'fp_count': [676338.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7067.0]}, >>> {'fn_count': [0.0], 'fp_count': [676348.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7406.0]}, >>> {'fn_count': [0.0], 'fp_count': [676626.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7858.0]}, >>> {'fn_count': [0.0], 'fp_count': [676693.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [10969.0]}, >>> {'fn_count': [0.0], 'fp_count': [677269.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11188.0]}, >>> {'fn_count': [0.0], 'fp_count': [677331.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11734.0]}, >>> {'fn_count': [0.0], 'fp_count': [677395.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11556.0]}, >>> {'fn_count': [0.0], 'fp_count': [677418.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11621.0]}, >>> {'fn_count': [0.0], 'fp_count': [677422.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11424.0]}, >>> {'fn_count': [0.0], 'fp_count': [677648.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [9804.0]}, >>> {'fn_count': [0.0], 'fp_count': [677826.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [2470.0]}, >>> {'fn_count': [0.0], 'fp_count': [677834.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [2470.0]}, >>> {'fn_count': [0.0], 'fp_count': [677835.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [2470.0]}, >>> {'fn_count': [11123.0, 0.0], 'fp_count': [0.0, 676754.0], 'thresholds': [0.0002442002442002442, 0.0], 'tn_count': [676754.0, 0.0], 'tp_count': [2.0, 11125.0]}, >>> {'fn_count': [7738.0, 0.0], 'fp_count': [0.0, 676466.0], 'thresholds': [0.0002442002442002442, 0.0], 'tn_count': [676466.0, 0.0], 'tp_count': [0.0, 7738.0]}, >>> {'fn_count': [8653.0, 0.0], 'fp_count': [0.0, 676341.0], 'thresholds': [0.0002442002442002442, 0.0], 'tn_count': [676341.0, 0.0], 'tp_count': [0.0, 8653.0]}, >>> ] >>> thresh_bins = np.linspace(0, 1, 4) >>> combo = Measures.combine(tocombine, thresh_bins=thresh_bins).reconstruct() >>> print('tocombine = {}'.format(ub.urepr(tocombine, nl=2))) >>> print('thresh_bins = {!r}'.format(thresh_bins)) >>> print(ub.urepr(combo.__json__(), nl=1)) >>> for thresh_bins in [4096, 1]: >>> combo = Measures.combine(tocombine, thresh_bins=thresh_bins).reconstruct() >>> print('thresh_bins = {!r}'.format(thresh_bins)) >>> print('combo = {}'.format(ub.urepr(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> for precision in [6, 5, 2]: >>> combo = Measures.combine(tocombine, precision=precision).reconstruct() >>> print('precision = {!r}'.format(precision)) >>> print('combo = {}'.format(ub.urepr(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> for growth in [None, 'max', 'log', 'root', 'half']: >>> combo = Measures.combine(tocombine, growth=growth).reconstruct() >>> print('growth = {!r}'.format(growth)) >>> print('combo = {}'.format(ub.urepr(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds'])))
- kwcoco.metrics.confusion_measures._combine_threshold(tocombine_thresh, thresh_bins, growth, precision)[source]¶
Logic to take care of combining thresholds in the case bins are not given
This can be fairly slow and lead to unnecessary memory usage
- kwcoco.metrics.confusion_measures.reversable_diff(arr, assume_sorted=1, reverse=False)[source]¶
Does a reversable array difference operation.
This will be used to find positions where accumulation happened in confusion count array.
- class kwcoco.metrics.confusion_measures.PerClass_Measures(cx_to_info)[source]¶
-
- draw(key='mcc', prefix='', **kw)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors # NOQA >>> cfsn_vecs = ConfusionVectors.demo() >>> ovr_cfsn = cfsn_vecs.binarize_ovr(keyby='name') >>> self = ovr_cfsn.measures()['perclass'] >>> self.draw('mcc', doclf=True, fnum=1) >>> self.draw('pr', doclf=1, fnum=2) >>> self.draw('roc', doclf=1, fnum=3)
- summary_plot(fnum=1, title='', subplots='auto')[source]¶
CommandLine
python ~/code/kwcoco/kwcoco/metrics/confusion_measures.py PerClass_Measures.summary_plot --show
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> n_fp=(0, 1), n_fn=(0, 3), nimgs=32, nboxes=(0, 32), >>> classes=3, rng=0, newstyle=1, box_noise=0.7, cls_noise=0.2, score_noise=0.3, with_probs=False) >>> cfsn_vecs = dmet.confusion_vectors() >>> ovr_cfsn = cfsn_vecs.binarize_ovr(keyby='name', ignore_classes=['vector', 'raster']) >>> self = ovr_cfsn.measures()['perclass'] >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> import seaborn as sns >>> sns.set() >>> self.summary_plot(title='demo summary_plot ovr', subplots=['pr', 'roc']) >>> kwplot.show_if_requested() >>> self.summary_plot(title='demo summary_plot ovr', subplots=['mcc', 'acc'], fnum=2)
- class kwcoco.metrics.confusion_measures.MeasureCombiner(precision=None, growth=None, thresh_bins=None)[source]¶
Bases:
object
Helper to iteravely combine binary measures generated by some process
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> from kwcoco.metrics.confusion_vectors import BinaryConfusionVectors >>> rng = kwarray.ensure_rng(0) >>> bin_combiner = MeasureCombiner(growth='max') >>> for _ in range(80): >>> bin_cfsn_vecs = BinaryConfusionVectors.demo(n=rng.randint(40, 50), rng=rng, p_true=0.2, p_error=0.4, p_miss=0.6) >>> bin_measures = bin_cfsn_vecs.measures() >>> bin_combiner.submit(bin_measures) >>> combined = bin_combiner.finalize() >>> print('combined = {!r}'.format(combined))
- property queue_size¶
- class kwcoco.metrics.confusion_measures.OneVersusRestMeasureCombiner(precision=None, growth=None, thresh_bins=None)[source]¶
Bases:
object
Helper to iteravely combine ovr measures generated by some process
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> from kwcoco.metrics.confusion_vectors import OneVsRestConfusionVectors >>> rng = kwarray.ensure_rng(0) >>> ovr_combiner = OneVersusRestMeasureCombiner(growth='max') >>> for _ in range(80): >>> ovr_cfsn_vecs = OneVsRestConfusionVectors.demo() >>> ovr_measures = ovr_cfsn_vecs.measures() >>> ovr_combiner.submit(ovr_measures) >>> combined = ovr_combiner.finalize() >>> print('combined = {!r}'.format(combined))
Classes that store raw confusion vectors, which can be accumulated into confusion measures.
- class kwcoco.metrics.confusion_vectors.ConfusionVectors(data, classes, probs=None)[source]¶
Bases:
NiceRepr
Stores information used to construct a confusion matrix. This includes corresponding vectors of predicted labels, true labels, sample weights, etc…
- Variables
data (kwarray.DataFrameArray) – should at least have keys true, pred, weight
classes (Sequence | CategoryTree) – list of category names or category graph
probs (ndarray | None) – probabilities for each class
Example
>>> # xdoctest: IGNORE_WANT >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors() >>> print(cfsn_vecs.data._pandas()) pred true score weight iou txs pxs gid 0 2 2 10.0000 1.0000 1.0000 0 4 0 1 2 2 7.5025 1.0000 1.0000 1 3 0 2 1 1 5.0050 1.0000 1.0000 2 2 0 3 3 -1 2.5075 1.0000 -1.0000 -1 1 0 4 2 -1 0.0100 1.0000 -1.0000 -1 0 0 5 -1 2 0.0000 1.0000 -1.0000 3 -1 0 6 -1 2 0.0000 1.0000 -1.0000 4 -1 0 7 2 2 10.0000 1.0000 1.0000 0 5 1 8 2 2 8.0020 1.0000 1.0000 1 4 1 9 1 1 6.0040 1.0000 1.0000 2 3 1 .. ... ... ... ... ... ... ... ... 62 -1 2 0.0000 1.0000 -1.0000 7 -1 7 63 -1 3 0.0000 1.0000 -1.0000 8 -1 7 64 -1 1 0.0000 1.0000 -1.0000 9 -1 7 65 1 -1 10.0000 1.0000 -1.0000 -1 0 8 66 1 1 0.0100 1.0000 1.0000 0 1 8 67 3 -1 10.0000 1.0000 -1.0000 -1 3 9 68 2 2 6.6700 1.0000 1.0000 0 2 9 69 2 2 3.3400 1.0000 1.0000 1 1 9 70 3 -1 0.0100 1.0000 -1.0000 -1 0 9 71 -1 2 0.0000 1.0000 -1.0000 2 -1 9
>>> # xdoctest: +REQUIRES(--show) >>> # xdoctest: +REQUIRES(module:pandas) >>> import kwplot >>> kwplot.autompl() >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors >>> cfsn_vecs = ConfusionVectors.demo( >>> nimgs=128, nboxes=(0, 10), n_fp=(0, 3), n_fn=(0, 3), classes=3) >>> cx_to_binvecs = cfsn_vecs.binarize_ovr() >>> measures = cx_to_binvecs.measures()['perclass'] >>> print('measures = {!r}'.format(measures)) measures = <PerClass_Measures({ 'cat_1': <Measures({'ap': 0.227, 'auc': 0.507, 'catname': cat_1, 'max_f1': f1=0.45@0.47, 'nsupport': 788.000})>, 'cat_2': <Measures({'ap': 0.288, 'auc': 0.572, 'catname': cat_2, 'max_f1': f1=0.51@0.43, 'nsupport': 788.000})>, 'cat_3': <Measures({'ap': 0.225, 'auc': 0.484, 'catname': cat_3, 'max_f1': f1=0.46@0.40, 'nsupport': 788.000})>, }) at 0x7facf77bdfd0> >>> kwplot.figure(fnum=1, doclf=True) >>> measures.draw(key='pr', fnum=1, pnum=(1, 3, 1)) >>> measures.draw(key='roc', fnum=1, pnum=(1, 3, 2)) >>> measures.draw(key='mcc', fnum=1, pnum=(1, 3, 3)) ...
- classmethod demo(**kw)[source]¶
- Parameters
**kwargs – See
kwcoco.metrics.DetectionMetrics.demo()
- Returns
ConfusionVectors
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> cfsn_vecs = ConfusionVectors.demo() >>> print('cfsn_vecs = {!r}'.format(cfsn_vecs)) >>> cx_to_binvecs = cfsn_vecs.binarize_ovr() >>> print('cx_to_binvecs = {!r}'.format(cx_to_binvecs))
- classmethod from_arrays(true, pred=None, score=None, weight=None, probs=None, classes=None)[source]¶
Construct confusion vector data structure from component arrays
Example
>>> # xdoctest: +REQUIRES(module:pandas) >>> import kwarray >>> classes = ['person', 'vehicle', 'object'] >>> rng = kwarray.ensure_rng(0) >>> true = (rng.rand(10) * len(classes)).astype(int) >>> probs = rng.rand(len(true), len(classes)) >>> cfsn_vecs = ConfusionVectors.from_arrays(true=true, probs=probs, classes=classes) >>> cfsn_vecs.confusion_matrix() pred person vehicle object real person 0 0 0 vehicle 2 4 1 object 2 1 0
- confusion_matrix(compress=False)[source]¶
Builds a confusion matrix from the confusion vectors.
- Parameters
compress (bool, default=False) – if True removes rows / columns with no entries
- Returns
- cmthe labeled confusion matrix
- (Note: we should write a efficient replacement for
this use case. #remove_pandas)
- Return type
pd.DataFrame
CommandLine
xdoctest -m kwcoco.metrics.confusion_vectors ConfusionVectors.confusion_matrix
Example
>>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), n_fn=(0, 1), >>> classes=3, cls_noise=.2, newstyle=False) >>> cfsn_vecs = dmet.confusion_vectors() >>> cm = cfsn_vecs.confusion_matrix() ... >>> print(cm.to_string(float_format=lambda x: '%.2f' % x)) pred background cat_1 cat_2 cat_3 real background 0.00 1.00 2.00 3.00 cat_1 3.00 12.00 0.00 0.00 cat_2 3.00 0.00 14.00 0.00 cat_3 2.00 0.00 0.00 17.00
- binarize_classless(negative_classes=None)[source]¶
Creates a binary representation useful for measuring the performance of detectors. It is assumed that scores of “positive” classes should be high and “negative” clases should be low.
- Parameters
negative_classes (List[str | int] | None) – list of negative class names or idxs, by default chooses any class with a true class index of -1. These classes should ideally have low scores.
- Returns
BinaryConfusionVectors
Note
The “classlessness” of this depends on the compat=”all” argument being used when constructing confusion vectors, otherwise it becomes something like a macro-average because the class information was used in deciding which true and predicted boxes were allowed to match.
Example
>>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), n_fn=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors() >>> class_idxs = list(dmet.classes.node_to_idx.values()) >>> binvecs = cfsn_vecs.binarize_classless()
- binarize_ovr(mode=1, keyby='name', ignore_classes={'ignore'}, approx=False)[source]¶
Transforms cfsn_vecs into one-vs-rest BinaryConfusionVectors for each category.
- Parameters
mode (int, default=1) – 0 for heirarchy aware or 1 for voc like. MODE 0 IS PROBABLY BROKEN
keyby (int | str) – can be cx or name
ignore_classes (Set[str]) – category names to ignore
approx (bool, default=0) – if True try and approximate missing scores otherwise assume they are irrecoverable and use -inf
- Returns
- which behaves like
Dict[int, BinaryConfusionVectors]: cx_to_binvecs
- Return type
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> cfsn_vecs = ConfusionVectors.demo() >>> print('cfsn_vecs = {!r}'.format(cfsn_vecs)) >>> catname_to_binvecs = cfsn_vecs.binarize_ovr(keyby='name') >>> print('catname_to_binvecs = {!r}'.format(catname_to_binvecs))
cfsn_vecs.data.pandas() catname_to_binvecs.cx_to_binvecs[‘class_1’].data.pandas()
Note
- class kwcoco.metrics.confusion_vectors.OneVsRestConfusionVectors(cx_to_binvecs, classes)[source]¶
Bases:
NiceRepr
Container for multiple one-vs-rest binary confusion vectors
- Variables
cx_to_binvecs –
classes –
Example
>>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors() >>> self = cfsn_vecs.binarize_ovr(keyby='name') >>> print('self = {!r}'.format(self))
- classmethod demo()[source]¶
- Parameters
**kwargs – See
kwcoco.metrics.DetectionMetrics.demo()
- Returns
ConfusionVectors
- measures(stabalize_thresh=7, fp_cutoff=None, monotonic_ppv=True, ap_method='pycocotools')[source]¶
Creates binary confusion measures for every one-versus-rest category.
- Parameters
stabalize_thresh (int) – if fewer than this many data points inserts dummy stabilization data so curves can still be drawn. Default to 7.
fp_cutoff (int | None) – maximum number of false positives in the truncated roc curves. The default
None
is equivalent tofloat('inf')
monotonic_ppv (bool) – if True ensures that precision is always increasing as recall decreases. This is done in pycocotools scoring, but I’m not sure its a good idea. Default to True.
Example
>>> self = OneVsRestConfusionVectors.demo() >>> thresh_result = self.measures()['perclass']
- class kwcoco.metrics.confusion_vectors.BinaryConfusionVectors(data, cx=None, classes=None)[source]¶
Bases:
NiceRepr
Stores information about a binary classification problem. This is always with respect to a specific class, which is given by cx and classes.
- The data DataFrameArray must contain
is_true - if the row is an instance of class classes[cx] pred_score - the predicted probability of class classes[cx], and weight - sample weight of the example
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> self = BinaryConfusionVectors.demo(n=10) >>> print('self = {!r}'.format(self)) >>> print('measures = {}'.format(ub.urepr(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=0) >>> print('measures = {}'.format(ub.urepr(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=1) >>> print('measures = {}'.format(ub.urepr(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=2) >>> print('measures = {}'.format(ub.urepr(self.measures())))
- classmethod demo(n=10, p_true=0.5, p_error=0.2, p_miss=0.0, rng=None)[source]¶
Create random data for tests
- Parameters
n (int) – number of rows
p_true (float) – fraction of real positive cases
p_error (float) – probability of making a recoverable mistake
p_miss (float) – probability of making a unrecoverable mistake
rng (int | RandomState | None) – random seed / state
- Returns
BinaryConfusionVectors
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> cfsn = BinaryConfusionVectors.demo(n=1000, p_error=0.1, p_miss=0.1) >>> measures = cfsn.measures() >>> print('measures = {}'.format(ub.urepr(measures, nl=1))) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.figure(fnum=1, pnum=(1, 2, 1)) >>> measures.draw('pr') >>> kwplot.figure(fnum=1, pnum=(1, 2, 2)) >>> measures.draw('roc')
- property catname¶
- measures(stabalize_thresh=7, fp_cutoff=None, monotonic_ppv=True, ap_method='pycocotools')[source]¶
Get statistics (F1, G1, MCC) versus thresholds
- Parameters
stabalize_thresh (int, default=7) – if fewer than this many data points inserts dummy stabalization data so curves can still be drawn.
fp_cutoff (int | None) – maximum number of false positives in the truncated roc curves. The default of
None
is equivalent tofloat('inf')
monotonic_ppv (bool) – if True ensures that precision is always increasing as recall decreases. This is done in pycocotools scoring, but I’m not sure its a good idea.
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> self = BinaryConfusionVectors.demo(n=0) >>> print('measures = {}'.format(ub.urepr(self.measures()))) >>> self = BinaryConfusionVectors.demo(n=1, p_true=0.5, p_error=0.5) >>> print('measures = {}'.format(ub.urepr(self.measures()))) >>> self = BinaryConfusionVectors.demo(n=3, p_true=0.5, p_error=0.5) >>> print('measures = {}'.format(ub.urepr(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=100, p_true=0.5, p_error=0.5, p_miss=0.3) >>> print('measures = {}'.format(ub.urepr(self.measures()))) >>> print('measures = {}'.format(ub.urepr(ub.odict(self.measures()))))
References
https://en.wikipedia.org/wiki/Confusion_matrix https://en.wikipedia.org/wiki/Precision_and_recall https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
- _binary_clf_curves(stabalize_thresh=7, fp_cutoff=None)[source]¶
Compute TP, FP, TN, and FN counts for this binary confusion vector.
Code common to ROC, PR, and threshold measures, computes the elements of the binary confusion matrix at all relevant operating point thresholds.
- Parameters
stabalize_thresh (int) – if fewer than this many data points insert stabalization data.
fp_cutoff (int | None) – maximum number of false positives
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> self = BinaryConfusionVectors.demo(n=1, p_true=0.5, p_error=0.5) >>> self._binary_clf_curves()
>>> self = BinaryConfusionVectors.demo(n=0, p_true=0.5, p_error=0.5) >>> self._binary_clf_curves()
>>> self = BinaryConfusionVectors.demo(n=100, p_true=0.5, p_error=0.5) >>> self._binary_clf_curves()
- _3dplot()[source]¶
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> n_fp=(0, 1), n_fn=(0, 2), nimgs=256, nboxes=(0, 10), >>> bbox_noise=10, >>> classes=1) >>> cfsn_vecs = dmet.confusion_vectors() >>> self = bin_cfsn = cfsn_vecs.binarize_classless() >>> #dmet.summarize(plot=True) >>> import kwplot >>> kwplot.autompl() >>> kwplot.figure(fnum=3) >>> self._3dplot()
- kwcoco.metrics.confusion_vectors._stabalize_data(y_true, y_score, sample_weight, npad=7)[source]¶
Adds ideally calibrated dummy values to curves with few positive examples. This acts somewhat like a Bayesian prior and smooths out the curve.
Example
y_score = np.array([0.5, 0.6]) y_true = np.array([1, 1]) sample_weight = np.array([1, 1]) npad = 7 _stabalize_data(y_true, y_score, sample_weight, npad=npad)
- class kwcoco.metrics.detect_metrics.DetectionMetrics(classes=None)[source]¶
Bases:
NiceRepr
Object that computes associations between detections and can convert them into sklearn-compatible representations for scoring.
- Variables
gid_to_true_dets (Dict[int, kwimage.Detections]) – maps image ids to truth
gid_to_pred_dets (Dict[int, kwimage.Detections]) – maps image ids to predictions
classes (kwcoco.CategoryTree | None) – the categories to be scored, if unspecified attempts to determine these from the truth detections
Example
>>> # Demo how to use detection metrics directly given detections only >>> # (no kwcoco file required) >>> from kwcoco.metrics import detect_metrics >>> import kwimage >>> # Setup random true detections (these are just boxes and scores) >>> true_dets = kwimage.Detections.random(3) >>> # Peek at the simple internals of a detections object >>> print('true_dets.data = {}'.format(ub.urepr(true_dets.data, nl=1))) >>> # Create similar but different predictions >>> true_subset = true_dets.take([1, 2]).warp(kwimage.Affine.coerce({'scale': 1.1})) >>> false_positive = kwimage.Detections.random(3) >>> pred_dets = kwimage.Detections.concatenate([true_subset, false_positive]) >>> dmet = DetectionMetrics() >>> dmet.add_predictions(pred_dets, imgname='image1') >>> dmet.add_truth(true_dets, imgname='image1') >>> # Raw confusion vectors >>> cfsn_vecs = dmet.confusion_vectors() >>> print(cfsn_vecs.data.pandas().to_string()) >>> # Our scoring definition (derived from confusion vectors) >>> print(dmet.score_kwcoco()) >>> # VOC scoring >>> print(dmet.score_voc(bias=0)) >>> # Original pycocotools scoring >>> # xdoctest: +REQUIRES(module:pycocotools) >>> print(dmet.score_pycocotools())
Example
>>> dmet = DetectionMetrics.demo( >>> nimgs=100, nboxes=(0, 3), n_fp=(0, 1), classes=8, score_noise=0.9, hacked=False) >>> print(dmet.score_kwcoco(bias=0, compat='mutex', prioritize='iou')['mAP']) ... >>> # NOTE: IN GENERAL NETHARN AND VOC ARE NOT THE SAME >>> print(dmet.score_voc(bias=0)['mAP']) 0.8582... >>> #print(dmet.score_coco()['mAP'])
- enrich_confusion_vectors(cfsn_vecs)[source]¶
Adds annotation id information into confusion vectors computed via this detection metrics object.
TODO: should likely use this at the end of the function that builds the confusion vectors.
- classmethod from_coco(true_coco, pred_coco, gids=None, verbose=0)[source]¶
Create detection metrics from two coco files representing the truth and predictions.
- Parameters
true_coco (kwcoco.CocoDataset) – coco dataset with ground truth
pred_coco (kwcoco.CocoDataset) – coco dataset with predictions
Example
>>> import kwcoco >>> from kwcoco.demo.perterb import perterb_coco >>> true_coco = kwcoco.CocoDataset.demo('shapes') >>> perterbkw = dict(box_noise=0.5, cls_noise=0.5, score_noise=0.5) >>> pred_coco = perterb_coco(true_coco, **perterbkw) >>> self = DetectionMetrics.from_coco(true_coco, pred_coco) >>> self.score_voc()
- add_predictions(pred_dets, imgname=None, gid=None)[source]¶
Register/Add predicted detections for an image
- Parameters
pred_dets (kwimage.Detections) – predicted detections
imgname (str | None) – a unique string to identify the image
gid (int | None) – the integer image id if known
- add_truth(true_dets, imgname=None, gid=None)[source]¶
Register/Add groundtruth detections for an image
- Parameters
true_dets (kwimage.Detections) – groundtruth
imgname (str | None) – a unique string to identify the image
gid (int | None) – the integer image id if known
- property classes¶
- confusion_vectors(iou_thresh=0.5, bias=0, gids=None, compat='mutex', prioritize='iou', ignore_classes='ignore', background_class=NoParam, verbose='auto', workers=0, track_probs='try', max_dets=None)[source]¶
Assigns predicted boxes to the true boxes so we can transform the detection problem into a classification problem for scoring.
- Parameters
iou_thresh (float | List[float]) – bounding box overlap iou threshold required for assignment if a list, then return type is a dict. Defaults to 0.5
bias (float) – for computing bounding box overlap, either 1 or 0 Defaults to 0.
gids (List[int] | None) – which subset of images ids to compute confusion metrics on. If not specified all images are used. Defaults to None.
compat (str) – can be (‘ancestors’ | ‘mutex’ | ‘all’). determines which pred boxes are allowed to match which true boxes. If ‘mutex’, then pred boxes can only match true boxes of the same class. If ‘ancestors’, then pred boxes can match true boxes that match or have a coarser label. If ‘all’, then any pred can match any true, regardless of its category label. Defaults to all.
prioritize (str) – can be (‘iou’ | ‘class’ | ‘correct’) determines which box to assign to if mutiple true boxes overlap a predicted box. if prioritize is iou, then the true box with maximum iou (above iou_thresh) will be chosen. If prioritize is class, then it will prefer matching a compatible class above a higher iou. If prioritize is correct, then ancestors of the true class are preferred over descendents of the true class, over unreleated classes. Default to ‘iou’
ignore_classes (set | str) – class names indicating ignore regions. Default={‘ignore’}
background_class (str | NoParamType) – Name of the background class. If unspecified we try to determine it with heuristics. A value of None means there is no background class.
verbose (int | str) – verbosity flag. Default to ‘auto’. In auto mode, verbose=1 if len(gids) > 1000.
workers (int) – number of parallel assignment processes. Defaults to 0
track_probs (str) – can be ‘try’, ‘force’, or False. if truthy, we assume probabilities for multiple classes are available. default=’try’
- Returns
ConfusionVectors | Dict[float, ConfusionVectors]
Example
>>> dmet = DetectionMetrics.demo(nimgs=30, classes=3, >>> nboxes=10, n_fp=3, box_noise=10, >>> with_probs=False) >>> iou_to_cfsn = dmet.confusion_vectors(iou_thresh=[0.3, 0.5, 0.9]) >>> for t, cfsn in iou_to_cfsn.items(): >>> print('t = {!r}'.format(t)) ... print(cfsn.binarize_ovr().measures()) ... print(cfsn.binarize_classless().measures())
- score_kwcoco(iou_thresh=0.5, bias=0, gids=None, compat='all', prioritize='iou')[source]¶
our scoring method
- score_voc(iou_thresh=0.5, bias=1, method='voc2012', gids=None, ignore_classes='ignore')[source]¶
score using voc method
Example
>>> dmet = DetectionMetrics.demo( >>> nimgs=100, nboxes=(0, 3), n_fp=(0, 1), classes=8, >>> score_noise=.5) >>> print(dmet.score_voc()['mAP']) 0.9399...
- _to_coco()[source]¶
Convert to a coco representation of truth and predictions
with inverse aid mappings
- score_pycocotools(with_evaler=False, with_confusion=False, verbose=0, iou_thresholds=None)[source]¶
score using ms-coco method
- Returns
dictionary with pct info
- Return type
Dict
Example
>>> # xdoctest: +REQUIRES(module:pycocotools) >>> from kwcoco.metrics.detect_metrics import * >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 3), n_fn=(0, 1), n_fp=(0, 1), classes=8, with_probs=False) >>> pct_info = dmet.score_pycocotools(verbose=1, >>> with_evaler=True, >>> with_confusion=True, >>> iou_thresholds=[0.5, 0.9]) >>> evaler = pct_info['evaler'] >>> iou_to_cfsn_vecs = pct_info['iou_to_cfsn_vecs'] >>> for iou_thresh in iou_to_cfsn_vecs.keys(): >>> print('iou_thresh = {!r}'.format(iou_thresh)) >>> cfsn_vecs = iou_to_cfsn_vecs[iou_thresh] >>> ovr_measures = cfsn_vecs.binarize_ovr().measures() >>> print('ovr_measures = {}'.format(ub.urepr(ovr_measures, nl=1, precision=4)))
Note
by default pycocotools computes average precision as the literal average of computed precisions at 101 uniformly spaced recall thresholds.
pycocoutils seems to only allow predictions with the same category as the truth to match those truth objects. This should be the same as calling dmet.confusion_vectors with compat = mutex
pycocoutils does not take into account the fact that each box often has a score for each category.
pycocoutils will be incorrect if any annotation has an id of 0
a major difference in the way kwcoco scores versus pycocoutils is the calculation of AP. The assignment between truth and predicted detections produces similar enough results. Given our confusion vectors we use the scikit-learn definition of AP, whereas pycocoutils seems to compute precision and recall — more or less correctly — but then it resamples the precision at various specified recall thresholds (in the accumulate function, specifically how pr is resampled into the q array). This can lead to a large difference in reported scores.
pycocoutils also smooths out the precision such that it is monotonic decreasing, which might not be the best idea.
pycocotools area ranges are inclusive on both ends, that means the “small” and “medium” truth selections do overlap somewhat.
- score_coco(with_evaler=False, with_confusion=False, verbose=0, iou_thresholds=None)¶
score using ms-coco method
- Returns
dictionary with pct info
- Return type
Dict
Example
>>> # xdoctest: +REQUIRES(module:pycocotools) >>> from kwcoco.metrics.detect_metrics import * >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 3), n_fn=(0, 1), n_fp=(0, 1), classes=8, with_probs=False) >>> pct_info = dmet.score_pycocotools(verbose=1, >>> with_evaler=True, >>> with_confusion=True, >>> iou_thresholds=[0.5, 0.9]) >>> evaler = pct_info['evaler'] >>> iou_to_cfsn_vecs = pct_info['iou_to_cfsn_vecs'] >>> for iou_thresh in iou_to_cfsn_vecs.keys(): >>> print('iou_thresh = {!r}'.format(iou_thresh)) >>> cfsn_vecs = iou_to_cfsn_vecs[iou_thresh] >>> ovr_measures = cfsn_vecs.binarize_ovr().measures() >>> print('ovr_measures = {}'.format(ub.urepr(ovr_measures, nl=1, precision=4)))
Note
by default pycocotools computes average precision as the literal average of computed precisions at 101 uniformly spaced recall thresholds.
pycocoutils seems to only allow predictions with the same category as the truth to match those truth objects. This should be the same as calling dmet.confusion_vectors with compat = mutex
pycocoutils does not take into account the fact that each box often has a score for each category.
pycocoutils will be incorrect if any annotation has an id of 0
a major difference in the way kwcoco scores versus pycocoutils is the calculation of AP. The assignment between truth and predicted detections produces similar enough results. Given our confusion vectors we use the scikit-learn definition of AP, whereas pycocoutils seems to compute precision and recall — more or less correctly — but then it resamples the precision at various specified recall thresholds (in the accumulate function, specifically how pr is resampled into the q array). This can lead to a large difference in reported scores.
pycocoutils also smooths out the precision such that it is monotonic decreasing, which might not be the best idea.
pycocotools area ranges are inclusive on both ends, that means the “small” and “medium” truth selections do overlap somewhat.
- classmethod demo(**kwargs)[source]¶
Creates random true boxes and predicted boxes that have some noisy offset from the truth.
- Kwargs:
- classes (int):
class list or the number of foreground classes. Defaults to 1.
nimgs (int): number of images in the coco datasts. Defaults to 1.
nboxes (int): boxes per image. Defaults to 1.
n_fp (int): number of false positives. Defaults to 0.
- n_fn (int):
number of false negatives. Defaults to 0.
- box_noise (float):
std of a normal distribution used to perterb both box location and box size. Defaults to 0.
- cls_noise (float):
probability that a class label will change. Must be within 0 and 1. Defaults to 0.
- anchors (ndarray):
used to create random boxes. Defaults to None.
- null_pred (bool):
if True, predicted classes are returned as null, which means only localization scoring is suitable. Defaults to 0.
- with_probs (bool):
if True, includes per-class probabilities with predictions Defaults to 1.
rng (int | None | RandomState): random seed / state
CommandLine
xdoctest -m kwcoco.metrics.detect_metrics DetectionMetrics.demo:2 --show
Example
>>> kwargs = {} >>> # Seed the RNG >>> kwargs['rng'] = 0 >>> # Size parameters determine how big the data is >>> kwargs['nimgs'] = 5 >>> kwargs['nboxes'] = 7 >>> kwargs['classes'] = 11 >>> # Noise parameters perterb predictions further from the truth >>> kwargs['n_fp'] = 3 >>> kwargs['box_noise'] = 0.1 >>> kwargs['cls_noise'] = 0.5 >>> dmet = DetectionMetrics.demo(**kwargs) >>> print('dmet.classes = {}'.format(dmet.classes)) dmet.classes = <CategoryTree(nNodes=12, maxDepth=3, maxBreadth=4...)> >>> # Can grab kwimage.Detection object for any image >>> print(dmet.true_detections(gid=0)) <Detections(4)> >>> print(dmet.pred_detections(gid=0)) <Detections(7)>
Example
>>> # Test case with null predicted categories >>> dmet = DetectionMetrics.demo(nimgs=30, null_pred=1, classes=3, >>> nboxes=10, n_fp=3, box_noise=0.1, >>> with_probs=False) >>> dmet.gid_to_pred_dets[0].data >>> dmet.gid_to_true_dets[0].data >>> cfsn_vecs = dmet.confusion_vectors() >>> binvecs_ovr = cfsn_vecs.binarize_ovr() >>> binvecs_per = cfsn_vecs.binarize_classless() >>> measures_per = binvecs_per.measures() >>> measures_ovr = binvecs_ovr.measures() >>> print('measures_per = {!r}'.format(measures_per)) >>> print('measures_ovr = {!r}'.format(measures_ovr)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> measures_ovr['perclass'].draw(key='pr', fnum=2)
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> n_fp=(0, 1), n_fn=(0, 1), nimgs=32, nboxes=(0, 16), >>> classes=3, rng=0, newstyle=1, box_noise=0.5, cls_noise=0.0, score_noise=0.3, with_probs=False) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> summary = dmet.summarize(plot=True, title='DetectionMetrics summary demo', with_ovr=True, with_bin=False) >>> summary['bin_measures'] >>> kwplot.show_if_requested()
- summarize(out_dpath=None, plot=False, title='', with_bin='auto', with_ovr='auto')[source]¶
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> n_fp=(0, 128), n_fn=(0, 4), nimgs=512, nboxes=(0, 32), >>> classes=3, rng=0) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> dmet.summarize(plot=True, title='DetectionMetrics summary demo') >>> kwplot.show_if_requested()
- kwcoco.metrics.detect_metrics._demo_construct_probs(pred_cxs, pred_scores, classes, rng, hacked=1)[source]¶
Constructs random probabilities for demo data
- kwcoco.metrics.detect_metrics.pycocotools_confusion_vectors(dmet, evaler, iou_thresh=0.5, verbose=0)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:pycocotools) >>> from kwcoco.metrics.detect_metrics import * >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 3), n_fn=(0, 1), n_fp=(0, 1), classes=8, with_probs=False) >>> coco_scores = dmet.score_pycocotools(with_evaler=True) >>> evaler = coco_scores['evaler'] >>> cfsn_vecs = pycocotools_confusion_vectors(dmet, evaler, verbose=1)
- kwcoco.metrics.detect_metrics.eval_detections_cli(**kw)[source]¶
DEPRECATED USE kwcoco eval instead
CommandLine
xdoctest -m ~/code/kwcoco/kwcoco/metrics/detect_metrics.py eval_detections_cli
- kwcoco.metrics.drawing.draw_perclass_roc(cx_to_info, classes=None, prefix='', fnum=1, fp_axis='count', **kw)[source]¶
- Parameters
cx_to_info (kwcoco.metrics.confusion_measures.PerClass_Measures | Dict)
fp_axis (str) – can be count or rate
- kwcoco.metrics.drawing.concice_si_display(val, eps=1e-08, precision=2, si_thresh=4)[source]¶
Display numbers in scientific notation if above a threshold
- Parameters
eps (float) – threshold to be formated as an integer if other integer conditions hold.
precision (int) – maximum significant digits (might print less)
si_thresh (int) – If the number is less than 10^{si_thresh}, then it will be printed as an integer if it is within eps of an integer.
References
https://docs.python.org/2/library/stdtypes.html#string-formatting-operations
Example
>>> grid = { >>> 'sign': [1, -1], >>> 'exp': [1, -1], >>> 'big_part': [0, 32132e3, 4000000032], >>> 'med_part': [0, 0.5, 0.9432, 0.000043, 0.01, 1, 2], >>> 'small_part': [0, 1321e-3, 43242e-11], >>> } >>> for kw in ub.named_product(grid): >>> sign = kw.pop('sign') >>> exp = kw.pop('exp') >>> raw = (sum(map(float, kw.values()))) >>> val = sign * raw ** exp if raw != 0 else sign * raw >>> print('{:>20} - {}'.format(concice_si_display(val), val)) >>> from kwcoco.metrics.drawing import * # NOQA >>> print(concice_si_display(40000000432432)) >>> print(concice_si_display(473243280432890)) >>> print(concice_si_display(473243284289)) >>> print(concice_si_display(473243289)) >>> print(concice_si_display(4739)) >>> print(concice_si_display(473)) >>> print(concice_si_display(0.432432)) >>> print(concice_si_display(0.132432)) >>> print(concice_si_display(1.0000043)) >>> print(concice_si_display(01.00000000000000000000000000043))
- kwcoco.metrics.drawing._realpos_label_suffix(info)[source]¶
Creates a label suffix that indicates the number of real positive cases versus the total amount of cases considered for an evaluation curve.
- Parameters
info (Dict) – with keys, nsuppert, realpos_total
Example
>>> from kwcoco.metrics.drawing import * # NOQA >>> info = {'nsupport': 10, 'realpos_total': 10} >>> _realpos_label_suffix(info) 10/10 >>> info = {'nsupport': 10.0, 'realpos_total': 10.0} >>> _realpos_label_suffix(info) 10/10 >>> info = {'nsupport': 10.3333, 'realpos_total': 10.22222} >>> _realpos_label_suffix(info) 10.22/10.33 >>> info = {'nsupport': 10.000000001, 'realpos_total': None} >>> _realpos_label_suffix(info) 10 >>> info = {'nsupport': 10.009} >>> _realpos_label_suffix(info) 10.01 >>> info = {'nsupport': 3331033334342.432, 'realpos_total': 1033334342.432} >>> _realpos_label_suffix(info) 1e9/3.3e12 >>> info = {'nsupport': 0.007, 'realpos_total': 0.0000893} >>> _realpos_label_suffix(info) 8.9e-5/0.007
- kwcoco.metrics.drawing.draw_perclass_prcurve(cx_to_info, classes=None, prefix='', fnum=1, **kw)[source]¶
- Parameters
cx_to_info (kwcoco.metrics.confusion_measures.PerClass_Measures | Dict)
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> from kwcoco.metrics.drawing import * # NOQA >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=3, nboxes=(0, 10), n_fp=(0, 3), n_fn=(0, 2), classes=3, score_noise=0.1, box_noise=0.1, with_probs=False) >>> cfsn_vecs = dmet.confusion_vectors() >>> print(cfsn_vecs.data.pandas()) >>> classes = cfsn_vecs.classes >>> cx_to_info = cfsn_vecs.binarize_ovr().measures()['perclass'] >>> print('cx_to_info = {}'.format(ub.urepr(cx_to_info, nl=1))) >>> import kwplot >>> kwplot.autompl() >>> draw_perclass_prcurve(cx_to_info, classes) >>> # xdoctest: +REQUIRES(--show) >>> kwplot.show_if_requested()
- kwcoco.metrics.drawing.draw_perclass_thresholds(cx_to_info, key='mcc', classes=None, prefix='', fnum=1, **kw)[source]¶
- Parameters
cx_to_info (kwcoco.metrics.confusion_measures.PerClass_Measures | Dict)
Note
Each category is inspected independently of one another, there is no notion of confusion.
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> from kwcoco.metrics.drawing import * # NOQA >>> from kwcoco.metrics import ConfusionVectors >>> cfsn_vecs = ConfusionVectors.demo() >>> classes = cfsn_vecs.classes >>> ovr_cfsn = cfsn_vecs.binarize_ovr(keyby='name') >>> cx_to_info = ovr_cfsn.measures()['perclass'] >>> import kwplot >>> kwplot.autompl() >>> key = 'mcc' >>> draw_perclass_thresholds(cx_to_info, key, classes) >>> # xdoctest: +REQUIRES(--show) >>> kwplot.show_if_requested()
- kwcoco.metrics.drawing.draw_roc(info, prefix='', fnum=1, **kw)[source]¶
- Parameters
info (Measures | Dict)
Note
There needs to be enough negative examples for using ROC to make any sense!
Example
>>> ### TODO# xdoctest: +REQUIRES(module:kwplot, module:seaborn) >>> # xdoctest: +REQUIRES(module:kwplot) >>> # xdoctest: +REQUIRES(module:seaborn) >>> from kwcoco.metrics.drawing import * # NOQA >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo(nimgs=30, null_pred=1, classes=3, >>> nboxes=10, n_fp=10, box_noise=0.3, >>> with_probs=False) >>> dmet.true_detections(0).data >>> cfsn_vecs = dmet.confusion_vectors(compat='mutex', prioritize='iou', bias=0) >>> print(cfsn_vecs.data._pandas().sort_values('score')) >>> classes = cfsn_vecs.classes >>> info = ub.peek(cfsn_vecs.binarize_ovr().measures()['perclass'].values()) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> draw_roc(info) >>> kwplot.show_if_requested()
- kwcoco.metrics.drawing.draw_prcurve(info, prefix='', fnum=1, **kw)[source]¶
Draws a single pr curve.
- Parameters
info (Measures | Dict)
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors()
>>> classes = cfsn_vecs.classes >>> info = cfsn_vecs.binarize_classless().measures() >>> import kwplot >>> kwplot.autompl() >>> draw_prcurve(info) >>> # xdoctest: +REQUIRES(--show) >>> kwplot.show_if_requested()
- kwcoco.metrics.drawing.draw_threshold_curves(info, keys=None, prefix='', fnum=1, **kw)[source]¶
- Parameters
info (Measures | Dict)
keys (None | List[str]) – the metrics to view over threhsolds
CommandLine
xdoctest -m kwcoco.metrics.drawing draw_threshold_curves --show
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> from kwcoco.metrics.drawing import * # NOQA >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors() >>> info = cfsn_vecs.binarize_classless().measures() >>> keys = None >>> import kwplot >>> kwplot.autompl() >>> keys = {'g1', 'f1', 'acc', 'mcc', 'tpr'} >>> draw_threshold_curves(info, keys) >>> # xdoctest: +REQUIRES(--show) >>> kwplot.show_if_requested()
- kwcoco.metrics.functional.fast_confusion_matrix(y_true, y_pred, n_labels, sample_weight=None)[source]¶
faster version of sklearn confusion matrix that avoids the expensive checks and label rectification
- Parameters
y_true (ndarray) – ground truth class label for each sample
y_pred (ndarray) – predicted class label for each sample
n_labels (int) – number of labels
sample_weight (ndarray | None) – weight of each sample Extended typing
ndarray[Any, int | Float]
- Returns
matrix where rows represent real and cols represent pred and the value at each cell is the total amount of weight Extended typing
ndarray[Shape['*, *'], Int64 | Float64]
- Return type
ndarray
Example
>>> y_true = np.array([0, 0, 0, 0, 1, 1, 1, 0, 0, 1]) >>> y_pred = np.array([0, 0, 0, 0, 0, 0, 0, 1, 1, 1]) >>> fast_confusion_matrix(y_true, y_pred, 2) array([[4, 2], [3, 1]]...) >>> fast_confusion_matrix(y_true, y_pred, 2).ravel() array([4, 2, 3, 1]...)
- kwcoco.metrics.functional._truncated_roc(y_df, bg_idx=-1, fp_cutoff=None)[source]¶
Computes truncated ROC info
- kwcoco.metrics.functional._pr_curves(y)[source]¶
Compute a PR curve from a method
- Parameters
y (pd.DataFrame | DataFrameArray) – output of detection_confusions
- Returns
Tuple[float, ndarray, ndarray]
Example
>>> # xdoctest: +REQUIRES(module:sklearn) >>> import pandas as pd >>> y1 = pd.DataFrame.from_records([ >>> {'pred': 0, 'score': 10.00, 'true': -1, 'weight': 1.00}, >>> {'pred': 0, 'score': 1.65, 'true': 0, 'weight': 1.00}, >>> {'pred': 0, 'score': 8.64, 'true': -1, 'weight': 1.00}, >>> {'pred': 0, 'score': 3.97, 'true': 0, 'weight': 1.00}, >>> {'pred': 0, 'score': 1.68, 'true': 0, 'weight': 1.00}, >>> {'pred': 0, 'score': 5.06, 'true': 0, 'weight': 1.00}, >>> {'pred': 0, 'score': 0.25, 'true': 0, 'weight': 1.00}, >>> {'pred': 0, 'score': 1.75, 'true': 0, 'weight': 1.00}, >>> {'pred': 0, 'score': 8.52, 'true': 0, 'weight': 1.00}, >>> {'pred': 0, 'score': 5.20, 'true': 0, 'weight': 1.00}, >>> ]) >>> import kwcoco as nh >>> import kwarray >>> y2 = kwarray.DataFrameArray(y1) >>> _pr_curves(y2) >>> _pr_curves(y1)
Faster pure-python versions of sklearn functions that avoid expensive checks and label rectifications. It is assumed that all labels are consecutive non-negative integers.
- kwcoco.metrics.sklearn_alts.confusion_matrix(y_true, y_pred, n_labels=None, labels=None, sample_weight=None)[source]¶
faster version of sklearn confusion matrix that avoids the expensive checks and label rectification
Runs in about 0.7ms
- Returns
matrix where rows represent real and cols represent pred
- Return type
ndarray
Example
>>> y_true = np.array([0, 0, 0, 0, 1, 1, 1, 0, 0, 1]) >>> y_pred = np.array([0, 0, 0, 0, 0, 0, 0, 1, 1, 1]) >>> confusion_matrix(y_true, y_pred, 2) array([[4, 2], [3, 1]]...) >>> confusion_matrix(y_true, y_pred, 2).ravel() array([4, 2, 3, 1]...)
Benchmark
>>> # xdoctest: +SKIP >>> import ubelt as ub >>> y_true = np.random.randint(0, 2, 10000) >>> y_pred = np.random.randint(0, 2, 10000) >>> n = 1000 >>> for timer in ub.Timerit(n, bestof=10, label='py-time'): >>> sample_weight = [1] * len(y_true) >>> confusion_matrix(y_true, y_pred, 2, sample_weight=sample_weight) >>> for timer in ub.Timerit(n, bestof=10, label='np-time'): >>> sample_weight = np.ones(len(y_true), dtype=int) >>> confusion_matrix(y_true, y_pred, 2, sample_weight=sample_weight)
- kwcoco.metrics.sklearn_alts._binary_clf_curve2(y_true, y_score, pos_label=None, sample_weight=None)[source]¶
MODIFIED VERSION OF SCIKIT-LEARN API
Calculate true and false positives per binary classification threshold.
- Parameters
y_true (array, shape = [n_samples]) – True targets of binary classification
y_score (array, shape = [n_samples]) – Estimated probabilities or decision function
pos_label (int or str, default=None) – The label of the positive class
sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.
- Returns
fps (array, shape = [n_thresholds]) – A count of false positives, at index i being the number of negative samples assigned a score >= thresholds[i]. The total number of negative samples is equal to fps[-1] (thus true negatives are given by fps[-1] - fps).
tps (array, shape = [n_thresholds <= len(np.unique(y_score))]) – An increasing count of true positives, at index i being the number of positive samples assigned a score >= thresholds[i]. The total number of positive samples is equal to tps[-1] (thus false negatives are given by tps[-1] - tps).
thresholds (array, shape = [n_thresholds]) – Decreasing score values.
Example
>>> y_true = [ 1, 1, 1, 1, 1, 1, 0] >>> y_score = [ np.nan, 0.2, 0.3, 0.4, 0.5, 0.6, 0.3] >>> sample_weight = None >>> pos_label = None >>> fps, tps, thresholds = _binary_clf_curve2(y_true, y_score)
- class kwcoco.metrics.voc_metrics.VOC_Metrics(classes=None)[source]¶
Bases:
NiceRepr
API to compute object detection scores using Pascal VOC evaluation method.
To use, add true and predicted detections for each image and then run the
VOC_Metrics.score()
function.- Variables
recs (Dict[int, List[dict]]) – true boxes for each image. maps image ids to a list of records within that image. Each record is a tlbr bbox, a difficult flag, and a class name.
cx_to_lines (Dict[int, List]) – VOC formatted prediction preditions. mapping from class index to all predictions for that category. Each “line” is a list of [[<imgid>, <score>, <tl_x>, <tl_y>, <br_x>, <br_y>]].
classes (None | List[str] | kwcoco.CategoryTree) – class names
- score(iou_thresh=0.5, bias=1, method='voc2012')[source]¶
Compute VOC scores for every category
Example
>>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> from kwcoco.metrics.voc_metrics import * # NOQA >>> dmet = DetectionMetrics.demo( >>> nimgs=1, nboxes=(0, 100), n_fp=(0, 30), n_fn=(0, 30), classes=2, score_noise=0.9, newstyle=0) >>> gid = ub.peek(dmet.gid_to_pred_dets) >>> self = VOC_Metrics(classes=dmet.classes) >>> self.add_truth(dmet.true_detections(gid), gid) >>> self.add_predictions(dmet.pred_detections(gid), gid) >>> voc_scores = self.score() >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.figure(fnum=1, doclf=True) >>> voc_scores['perclass'].draw(key='pr')
kwplot.figure(fnum=2) dmet.true_detections(0).draw(color=’green’, labels=None) dmet.pred_detections(0).draw(color=’blue’, labels=None) kwplot.autoplt().gca().set_xlim(0, 100) kwplot.autoplt().gca().set_ylim(0, 100)
- kwcoco.metrics.voc_metrics._pr_curves(y, method='voc2012')[source]¶
Compute a PR curve from a method
- Parameters
y (pd.DataFrame | DataFrameArray) – output of detection_confusions
- Returns
Tuple[float, ndarray, ndarray]
Example
>>> import pandas as pd >>> y1 = pd.DataFrame.from_records([ >>> {'pred': 0, 'score': 10.00, 'true': -1, 'weight': 1.00}, >>> {'pred': 0, 'score': 1.65, 'true': 0, 'weight': 1.00}, >>> {'pred': 0, 'score': 8.64, 'true': -1, 'weight': 1.00}, >>> {'pred': 0, 'score': 3.97, 'true': 0, 'weight': 1.00}, >>> {'pred': 0, 'score': 1.68, 'true': 0, 'weight': 1.00}, >>> {'pred': 0, 'score': 5.06, 'true': 0, 'weight': 1.00}, >>> {'pred': 0, 'score': 0.25, 'true': 0, 'weight': 1.00}, >>> {'pred': 0, 'score': 1.75, 'true': 0, 'weight': 1.00}, >>> {'pred': 0, 'score': 8.52, 'true': 0, 'weight': 1.00}, >>> {'pred': 0, 'score': 5.20, 'true': 0, 'weight': 1.00}, >>> ]) >>> import kwarray >>> y2 = kwarray.DataFrameArray(y1) >>> _pr_curves(y2) >>> _pr_curves(y1)
- kwcoco.metrics.voc_metrics._voc_eval(lines, recs, classname, iou_thresh=0.5, method='voc2012', bias=1.0)[source]¶
VOC AP evaluation for a single category.
- Parameters
lines (List[list]) – VOC formatted predictions. Each “line” is a list of [[<imgid>, <score>, <tl_x>, <tl_y>, <br_x>, <br_y>]].
recs (Dict[int, List[dict]) – true boxes for each image. maps image ids to a list of records within that image. Each record is a tlbr bbox, a difficult flag, and a class name.
classname (str) – the category to evaluate.
method (str) – code for how the AP is computed.
bias (float) – either 1.0 or 0.0.
- Returns
info about the evaluation containing AP. Contains fp, tp, prec, rec,
- Return type
Dict
Note
Raw replication of matlab implementation of creating assignments and the resulting PR-curves and AP. Based on MATLAB code [1].
References
[1] http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCdevkit_18-May-2011.tar
- kwcoco.metrics.voc_metrics._voc_ave_precision(rec, prec, method='voc2012')[source]¶
Compute AP from precision and recall Based on MATLAB code in 1, 2, and 3.
- Parameters
rec (ndarray) – recall
prec (ndarray) – precision
method (str) – either voc2012 or voc2007
- Returns
ap: average precision
- Return type
References
Module contents¶
mkinit kwcoco.metrics -w –relative
- class kwcoco.metrics.BinaryConfusionVectors(data, cx=None, classes=None)[source]¶
Bases:
NiceRepr
Stores information about a binary classification problem. This is always with respect to a specific class, which is given by cx and classes.
- The data DataFrameArray must contain
is_true - if the row is an instance of class classes[cx] pred_score - the predicted probability of class classes[cx], and weight - sample weight of the example
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> self = BinaryConfusionVectors.demo(n=10) >>> print('self = {!r}'.format(self)) >>> print('measures = {}'.format(ub.urepr(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=0) >>> print('measures = {}'.format(ub.urepr(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=1) >>> print('measures = {}'.format(ub.urepr(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=2) >>> print('measures = {}'.format(ub.urepr(self.measures())))
- classmethod demo(n=10, p_true=0.5, p_error=0.2, p_miss=0.0, rng=None)[source]¶
Create random data for tests
- Parameters
n (int) – number of rows
p_true (float) – fraction of real positive cases
p_error (float) – probability of making a recoverable mistake
p_miss (float) – probability of making a unrecoverable mistake
rng (int | RandomState | None) – random seed / state
- Returns
BinaryConfusionVectors
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> cfsn = BinaryConfusionVectors.demo(n=1000, p_error=0.1, p_miss=0.1) >>> measures = cfsn.measures() >>> print('measures = {}'.format(ub.urepr(measures, nl=1))) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.figure(fnum=1, pnum=(1, 2, 1)) >>> measures.draw('pr') >>> kwplot.figure(fnum=1, pnum=(1, 2, 2)) >>> measures.draw('roc')
- property catname¶
- measures(stabalize_thresh=7, fp_cutoff=None, monotonic_ppv=True, ap_method='pycocotools')[source]¶
Get statistics (F1, G1, MCC) versus thresholds
- Parameters
stabalize_thresh (int, default=7) – if fewer than this many data points inserts dummy stabalization data so curves can still be drawn.
fp_cutoff (int | None) – maximum number of false positives in the truncated roc curves. The default of
None
is equivalent tofloat('inf')
monotonic_ppv (bool) – if True ensures that precision is always increasing as recall decreases. This is done in pycocotools scoring, but I’m not sure its a good idea.
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> self = BinaryConfusionVectors.demo(n=0) >>> print('measures = {}'.format(ub.urepr(self.measures()))) >>> self = BinaryConfusionVectors.demo(n=1, p_true=0.5, p_error=0.5) >>> print('measures = {}'.format(ub.urepr(self.measures()))) >>> self = BinaryConfusionVectors.demo(n=3, p_true=0.5, p_error=0.5) >>> print('measures = {}'.format(ub.urepr(self.measures())))
>>> self = BinaryConfusionVectors.demo(n=100, p_true=0.5, p_error=0.5, p_miss=0.3) >>> print('measures = {}'.format(ub.urepr(self.measures()))) >>> print('measures = {}'.format(ub.urepr(ub.odict(self.measures()))))
References
https://en.wikipedia.org/wiki/Confusion_matrix https://en.wikipedia.org/wiki/Precision_and_recall https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
- _binary_clf_curves(stabalize_thresh=7, fp_cutoff=None)[source]¶
Compute TP, FP, TN, and FN counts for this binary confusion vector.
Code common to ROC, PR, and threshold measures, computes the elements of the binary confusion matrix at all relevant operating point thresholds.
- Parameters
stabalize_thresh (int) – if fewer than this many data points insert stabalization data.
fp_cutoff (int | None) – maximum number of false positives
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> self = BinaryConfusionVectors.demo(n=1, p_true=0.5, p_error=0.5) >>> self._binary_clf_curves()
>>> self = BinaryConfusionVectors.demo(n=0, p_true=0.5, p_error=0.5) >>> self._binary_clf_curves()
>>> self = BinaryConfusionVectors.demo(n=100, p_true=0.5, p_error=0.5) >>> self._binary_clf_curves()
- _3dplot()[source]¶
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> n_fp=(0, 1), n_fn=(0, 2), nimgs=256, nboxes=(0, 10), >>> bbox_noise=10, >>> classes=1) >>> cfsn_vecs = dmet.confusion_vectors() >>> self = bin_cfsn = cfsn_vecs.binarize_classless() >>> #dmet.summarize(plot=True) >>> import kwplot >>> kwplot.autompl() >>> kwplot.figure(fnum=3) >>> self._3dplot()
- class kwcoco.metrics.ConfusionVectors(data, classes, probs=None)[source]¶
Bases:
NiceRepr
Stores information used to construct a confusion matrix. This includes corresponding vectors of predicted labels, true labels, sample weights, etc…
- Variables
data (kwarray.DataFrameArray) – should at least have keys true, pred, weight
classes (Sequence | CategoryTree) – list of category names or category graph
probs (ndarray | None) – probabilities for each class
Example
>>> # xdoctest: IGNORE_WANT >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors() >>> print(cfsn_vecs.data._pandas()) pred true score weight iou txs pxs gid 0 2 2 10.0000 1.0000 1.0000 0 4 0 1 2 2 7.5025 1.0000 1.0000 1 3 0 2 1 1 5.0050 1.0000 1.0000 2 2 0 3 3 -1 2.5075 1.0000 -1.0000 -1 1 0 4 2 -1 0.0100 1.0000 -1.0000 -1 0 0 5 -1 2 0.0000 1.0000 -1.0000 3 -1 0 6 -1 2 0.0000 1.0000 -1.0000 4 -1 0 7 2 2 10.0000 1.0000 1.0000 0 5 1 8 2 2 8.0020 1.0000 1.0000 1 4 1 9 1 1 6.0040 1.0000 1.0000 2 3 1 .. ... ... ... ... ... ... ... ... 62 -1 2 0.0000 1.0000 -1.0000 7 -1 7 63 -1 3 0.0000 1.0000 -1.0000 8 -1 7 64 -1 1 0.0000 1.0000 -1.0000 9 -1 7 65 1 -1 10.0000 1.0000 -1.0000 -1 0 8 66 1 1 0.0100 1.0000 1.0000 0 1 8 67 3 -1 10.0000 1.0000 -1.0000 -1 3 9 68 2 2 6.6700 1.0000 1.0000 0 2 9 69 2 2 3.3400 1.0000 1.0000 1 1 9 70 3 -1 0.0100 1.0000 -1.0000 -1 0 9 71 -1 2 0.0000 1.0000 -1.0000 2 -1 9
>>> # xdoctest: +REQUIRES(--show) >>> # xdoctest: +REQUIRES(module:pandas) >>> import kwplot >>> kwplot.autompl() >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors >>> cfsn_vecs = ConfusionVectors.demo( >>> nimgs=128, nboxes=(0, 10), n_fp=(0, 3), n_fn=(0, 3), classes=3) >>> cx_to_binvecs = cfsn_vecs.binarize_ovr() >>> measures = cx_to_binvecs.measures()['perclass'] >>> print('measures = {!r}'.format(measures)) measures = <PerClass_Measures({ 'cat_1': <Measures({'ap': 0.227, 'auc': 0.507, 'catname': cat_1, 'max_f1': f1=0.45@0.47, 'nsupport': 788.000})>, 'cat_2': <Measures({'ap': 0.288, 'auc': 0.572, 'catname': cat_2, 'max_f1': f1=0.51@0.43, 'nsupport': 788.000})>, 'cat_3': <Measures({'ap': 0.225, 'auc': 0.484, 'catname': cat_3, 'max_f1': f1=0.46@0.40, 'nsupport': 788.000})>, }) at 0x7facf77bdfd0> >>> kwplot.figure(fnum=1, doclf=True) >>> measures.draw(key='pr', fnum=1, pnum=(1, 3, 1)) >>> measures.draw(key='roc', fnum=1, pnum=(1, 3, 2)) >>> measures.draw(key='mcc', fnum=1, pnum=(1, 3, 3)) ...
- classmethod demo(**kw)[source]¶
- Parameters
**kwargs – See
kwcoco.metrics.DetectionMetrics.demo()
- Returns
ConfusionVectors
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> cfsn_vecs = ConfusionVectors.demo() >>> print('cfsn_vecs = {!r}'.format(cfsn_vecs)) >>> cx_to_binvecs = cfsn_vecs.binarize_ovr() >>> print('cx_to_binvecs = {!r}'.format(cx_to_binvecs))
- classmethod from_arrays(true, pred=None, score=None, weight=None, probs=None, classes=None)[source]¶
Construct confusion vector data structure from component arrays
Example
>>> # xdoctest: +REQUIRES(module:pandas) >>> import kwarray >>> classes = ['person', 'vehicle', 'object'] >>> rng = kwarray.ensure_rng(0) >>> true = (rng.rand(10) * len(classes)).astype(int) >>> probs = rng.rand(len(true), len(classes)) >>> cfsn_vecs = ConfusionVectors.from_arrays(true=true, probs=probs, classes=classes) >>> cfsn_vecs.confusion_matrix() pred person vehicle object real person 0 0 0 vehicle 2 4 1 object 2 1 0
- confusion_matrix(compress=False)[source]¶
Builds a confusion matrix from the confusion vectors.
- Parameters
compress (bool, default=False) – if True removes rows / columns with no entries
- Returns
- cmthe labeled confusion matrix
- (Note: we should write a efficient replacement for
this use case. #remove_pandas)
- Return type
pd.DataFrame
CommandLine
xdoctest -m kwcoco.metrics.confusion_vectors ConfusionVectors.confusion_matrix
Example
>>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), n_fn=(0, 1), >>> classes=3, cls_noise=.2, newstyle=False) >>> cfsn_vecs = dmet.confusion_vectors() >>> cm = cfsn_vecs.confusion_matrix() ... >>> print(cm.to_string(float_format=lambda x: '%.2f' % x)) pred background cat_1 cat_2 cat_3 real background 0.00 1.00 2.00 3.00 cat_1 3.00 12.00 0.00 0.00 cat_2 3.00 0.00 14.00 0.00 cat_3 2.00 0.00 0.00 17.00
- binarize_classless(negative_classes=None)[source]¶
Creates a binary representation useful for measuring the performance of detectors. It is assumed that scores of “positive” classes should be high and “negative” clases should be low.
- Parameters
negative_classes (List[str | int] | None) – list of negative class names or idxs, by default chooses any class with a true class index of -1. These classes should ideally have low scores.
- Returns
BinaryConfusionVectors
Note
The “classlessness” of this depends on the compat=”all” argument being used when constructing confusion vectors, otherwise it becomes something like a macro-average because the class information was used in deciding which true and predicted boxes were allowed to match.
Example
>>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), n_fn=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors() >>> class_idxs = list(dmet.classes.node_to_idx.values()) >>> binvecs = cfsn_vecs.binarize_classless()
- binarize_ovr(mode=1, keyby='name', ignore_classes={'ignore'}, approx=False)[source]¶
Transforms cfsn_vecs into one-vs-rest BinaryConfusionVectors for each category.
- Parameters
mode (int, default=1) – 0 for heirarchy aware or 1 for voc like. MODE 0 IS PROBABLY BROKEN
keyby (int | str) – can be cx or name
ignore_classes (Set[str]) – category names to ignore
approx (bool, default=0) – if True try and approximate missing scores otherwise assume they are irrecoverable and use -inf
- Returns
- which behaves like
Dict[int, BinaryConfusionVectors]: cx_to_binvecs
- Return type
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> cfsn_vecs = ConfusionVectors.demo() >>> print('cfsn_vecs = {!r}'.format(cfsn_vecs)) >>> catname_to_binvecs = cfsn_vecs.binarize_ovr(keyby='name') >>> print('catname_to_binvecs = {!r}'.format(catname_to_binvecs))
cfsn_vecs.data.pandas() catname_to_binvecs.cx_to_binvecs[‘class_1’].data.pandas()
Note
- class kwcoco.metrics.DetectionMetrics(classes=None)[source]¶
Bases:
NiceRepr
Object that computes associations between detections and can convert them into sklearn-compatible representations for scoring.
- Variables
gid_to_true_dets (Dict[int, kwimage.Detections]) – maps image ids to truth
gid_to_pred_dets (Dict[int, kwimage.Detections]) – maps image ids to predictions
classes (kwcoco.CategoryTree | None) – the categories to be scored, if unspecified attempts to determine these from the truth detections
Example
>>> # Demo how to use detection metrics directly given detections only >>> # (no kwcoco file required) >>> from kwcoco.metrics import detect_metrics >>> import kwimage >>> # Setup random true detections (these are just boxes and scores) >>> true_dets = kwimage.Detections.random(3) >>> # Peek at the simple internals of a detections object >>> print('true_dets.data = {}'.format(ub.urepr(true_dets.data, nl=1))) >>> # Create similar but different predictions >>> true_subset = true_dets.take([1, 2]).warp(kwimage.Affine.coerce({'scale': 1.1})) >>> false_positive = kwimage.Detections.random(3) >>> pred_dets = kwimage.Detections.concatenate([true_subset, false_positive]) >>> dmet = DetectionMetrics() >>> dmet.add_predictions(pred_dets, imgname='image1') >>> dmet.add_truth(true_dets, imgname='image1') >>> # Raw confusion vectors >>> cfsn_vecs = dmet.confusion_vectors() >>> print(cfsn_vecs.data.pandas().to_string()) >>> # Our scoring definition (derived from confusion vectors) >>> print(dmet.score_kwcoco()) >>> # VOC scoring >>> print(dmet.score_voc(bias=0)) >>> # Original pycocotools scoring >>> # xdoctest: +REQUIRES(module:pycocotools) >>> print(dmet.score_pycocotools())
Example
>>> dmet = DetectionMetrics.demo( >>> nimgs=100, nboxes=(0, 3), n_fp=(0, 1), classes=8, score_noise=0.9, hacked=False) >>> print(dmet.score_kwcoco(bias=0, compat='mutex', prioritize='iou')['mAP']) ... >>> # NOTE: IN GENERAL NETHARN AND VOC ARE NOT THE SAME >>> print(dmet.score_voc(bias=0)['mAP']) 0.8582... >>> #print(dmet.score_coco()['mAP'])
- enrich_confusion_vectors(cfsn_vecs)[source]¶
Adds annotation id information into confusion vectors computed via this detection metrics object.
TODO: should likely use this at the end of the function that builds the confusion vectors.
- classmethod from_coco(true_coco, pred_coco, gids=None, verbose=0)[source]¶
Create detection metrics from two coco files representing the truth and predictions.
- Parameters
true_coco (kwcoco.CocoDataset) – coco dataset with ground truth
pred_coco (kwcoco.CocoDataset) – coco dataset with predictions
Example
>>> import kwcoco >>> from kwcoco.demo.perterb import perterb_coco >>> true_coco = kwcoco.CocoDataset.demo('shapes') >>> perterbkw = dict(box_noise=0.5, cls_noise=0.5, score_noise=0.5) >>> pred_coco = perterb_coco(true_coco, **perterbkw) >>> self = DetectionMetrics.from_coco(true_coco, pred_coco) >>> self.score_voc()
- add_predictions(pred_dets, imgname=None, gid=None)[source]¶
Register/Add predicted detections for an image
- Parameters
pred_dets (kwimage.Detections) – predicted detections
imgname (str | None) – a unique string to identify the image
gid (int | None) – the integer image id if known
- add_truth(true_dets, imgname=None, gid=None)[source]¶
Register/Add groundtruth detections for an image
- Parameters
true_dets (kwimage.Detections) – groundtruth
imgname (str | None) – a unique string to identify the image
gid (int | None) – the integer image id if known
- property classes¶
- confusion_vectors(iou_thresh=0.5, bias=0, gids=None, compat='mutex', prioritize='iou', ignore_classes='ignore', background_class=NoParam, verbose='auto', workers=0, track_probs='try', max_dets=None)[source]¶
Assigns predicted boxes to the true boxes so we can transform the detection problem into a classification problem for scoring.
- Parameters
iou_thresh (float | List[float]) – bounding box overlap iou threshold required for assignment if a list, then return type is a dict. Defaults to 0.5
bias (float) – for computing bounding box overlap, either 1 or 0 Defaults to 0.
gids (List[int] | None) – which subset of images ids to compute confusion metrics on. If not specified all images are used. Defaults to None.
compat (str) – can be (‘ancestors’ | ‘mutex’ | ‘all’). determines which pred boxes are allowed to match which true boxes. If ‘mutex’, then pred boxes can only match true boxes of the same class. If ‘ancestors’, then pred boxes can match true boxes that match or have a coarser label. If ‘all’, then any pred can match any true, regardless of its category label. Defaults to all.
prioritize (str) – can be (‘iou’ | ‘class’ | ‘correct’) determines which box to assign to if mutiple true boxes overlap a predicted box. if prioritize is iou, then the true box with maximum iou (above iou_thresh) will be chosen. If prioritize is class, then it will prefer matching a compatible class above a higher iou. If prioritize is correct, then ancestors of the true class are preferred over descendents of the true class, over unreleated classes. Default to ‘iou’
ignore_classes (set | str) – class names indicating ignore regions. Default={‘ignore’}
background_class (str | NoParamType) – Name of the background class. If unspecified we try to determine it with heuristics. A value of None means there is no background class.
verbose (int | str) – verbosity flag. Default to ‘auto’. In auto mode, verbose=1 if len(gids) > 1000.
workers (int) – number of parallel assignment processes. Defaults to 0
track_probs (str) – can be ‘try’, ‘force’, or False. if truthy, we assume probabilities for multiple classes are available. default=’try’
- Returns
ConfusionVectors | Dict[float, ConfusionVectors]
Example
>>> dmet = DetectionMetrics.demo(nimgs=30, classes=3, >>> nboxes=10, n_fp=3, box_noise=10, >>> with_probs=False) >>> iou_to_cfsn = dmet.confusion_vectors(iou_thresh=[0.3, 0.5, 0.9]) >>> for t, cfsn in iou_to_cfsn.items(): >>> print('t = {!r}'.format(t)) ... print(cfsn.binarize_ovr().measures()) ... print(cfsn.binarize_classless().measures())
- score_kwcoco(iou_thresh=0.5, bias=0, gids=None, compat='all', prioritize='iou')[source]¶
our scoring method
- score_voc(iou_thresh=0.5, bias=1, method='voc2012', gids=None, ignore_classes='ignore')[source]¶
score using voc method
Example
>>> dmet = DetectionMetrics.demo( >>> nimgs=100, nboxes=(0, 3), n_fp=(0, 1), classes=8, >>> score_noise=.5) >>> print(dmet.score_voc()['mAP']) 0.9399...
- _to_coco()[source]¶
Convert to a coco representation of truth and predictions
with inverse aid mappings
- score_pycocotools(with_evaler=False, with_confusion=False, verbose=0, iou_thresholds=None)[source]¶
score using ms-coco method
- Returns
dictionary with pct info
- Return type
Dict
Example
>>> # xdoctest: +REQUIRES(module:pycocotools) >>> from kwcoco.metrics.detect_metrics import * >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 3), n_fn=(0, 1), n_fp=(0, 1), classes=8, with_probs=False) >>> pct_info = dmet.score_pycocotools(verbose=1, >>> with_evaler=True, >>> with_confusion=True, >>> iou_thresholds=[0.5, 0.9]) >>> evaler = pct_info['evaler'] >>> iou_to_cfsn_vecs = pct_info['iou_to_cfsn_vecs'] >>> for iou_thresh in iou_to_cfsn_vecs.keys(): >>> print('iou_thresh = {!r}'.format(iou_thresh)) >>> cfsn_vecs = iou_to_cfsn_vecs[iou_thresh] >>> ovr_measures = cfsn_vecs.binarize_ovr().measures() >>> print('ovr_measures = {}'.format(ub.urepr(ovr_measures, nl=1, precision=4)))
Note
by default pycocotools computes average precision as the literal average of computed precisions at 101 uniformly spaced recall thresholds.
pycocoutils seems to only allow predictions with the same category as the truth to match those truth objects. This should be the same as calling dmet.confusion_vectors with compat = mutex
pycocoutils does not take into account the fact that each box often has a score for each category.
pycocoutils will be incorrect if any annotation has an id of 0
a major difference in the way kwcoco scores versus pycocoutils is the calculation of AP. The assignment between truth and predicted detections produces similar enough results. Given our confusion vectors we use the scikit-learn definition of AP, whereas pycocoutils seems to compute precision and recall — more or less correctly — but then it resamples the precision at various specified recall thresholds (in the accumulate function, specifically how pr is resampled into the q array). This can lead to a large difference in reported scores.
pycocoutils also smooths out the precision such that it is monotonic decreasing, which might not be the best idea.
pycocotools area ranges are inclusive on both ends, that means the “small” and “medium” truth selections do overlap somewhat.
- score_coco(with_evaler=False, with_confusion=False, verbose=0, iou_thresholds=None)¶
score using ms-coco method
- Returns
dictionary with pct info
- Return type
Dict
Example
>>> # xdoctest: +REQUIRES(module:pycocotools) >>> from kwcoco.metrics.detect_metrics import * >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 3), n_fn=(0, 1), n_fp=(0, 1), classes=8, with_probs=False) >>> pct_info = dmet.score_pycocotools(verbose=1, >>> with_evaler=True, >>> with_confusion=True, >>> iou_thresholds=[0.5, 0.9]) >>> evaler = pct_info['evaler'] >>> iou_to_cfsn_vecs = pct_info['iou_to_cfsn_vecs'] >>> for iou_thresh in iou_to_cfsn_vecs.keys(): >>> print('iou_thresh = {!r}'.format(iou_thresh)) >>> cfsn_vecs = iou_to_cfsn_vecs[iou_thresh] >>> ovr_measures = cfsn_vecs.binarize_ovr().measures() >>> print('ovr_measures = {}'.format(ub.urepr(ovr_measures, nl=1, precision=4)))
Note
by default pycocotools computes average precision as the literal average of computed precisions at 101 uniformly spaced recall thresholds.
pycocoutils seems to only allow predictions with the same category as the truth to match those truth objects. This should be the same as calling dmet.confusion_vectors with compat = mutex
pycocoutils does not take into account the fact that each box often has a score for each category.
pycocoutils will be incorrect if any annotation has an id of 0
a major difference in the way kwcoco scores versus pycocoutils is the calculation of AP. The assignment between truth and predicted detections produces similar enough results. Given our confusion vectors we use the scikit-learn definition of AP, whereas pycocoutils seems to compute precision and recall — more or less correctly — but then it resamples the precision at various specified recall thresholds (in the accumulate function, specifically how pr is resampled into the q array). This can lead to a large difference in reported scores.
pycocoutils also smooths out the precision such that it is monotonic decreasing, which might not be the best idea.
pycocotools area ranges are inclusive on both ends, that means the “small” and “medium” truth selections do overlap somewhat.
- classmethod demo(**kwargs)[source]¶
Creates random true boxes and predicted boxes that have some noisy offset from the truth.
- Kwargs:
- classes (int):
class list or the number of foreground classes. Defaults to 1.
nimgs (int): number of images in the coco datasts. Defaults to 1.
nboxes (int): boxes per image. Defaults to 1.
n_fp (int): number of false positives. Defaults to 0.
- n_fn (int):
number of false negatives. Defaults to 0.
- box_noise (float):
std of a normal distribution used to perterb both box location and box size. Defaults to 0.
- cls_noise (float):
probability that a class label will change. Must be within 0 and 1. Defaults to 0.
- anchors (ndarray):
used to create random boxes. Defaults to None.
- null_pred (bool):
if True, predicted classes are returned as null, which means only localization scoring is suitable. Defaults to 0.
- with_probs (bool):
if True, includes per-class probabilities with predictions Defaults to 1.
rng (int | None | RandomState): random seed / state
CommandLine
xdoctest -m kwcoco.metrics.detect_metrics DetectionMetrics.demo:2 --show
Example
>>> kwargs = {} >>> # Seed the RNG >>> kwargs['rng'] = 0 >>> # Size parameters determine how big the data is >>> kwargs['nimgs'] = 5 >>> kwargs['nboxes'] = 7 >>> kwargs['classes'] = 11 >>> # Noise parameters perterb predictions further from the truth >>> kwargs['n_fp'] = 3 >>> kwargs['box_noise'] = 0.1 >>> kwargs['cls_noise'] = 0.5 >>> dmet = DetectionMetrics.demo(**kwargs) >>> print('dmet.classes = {}'.format(dmet.classes)) dmet.classes = <CategoryTree(nNodes=12, maxDepth=3, maxBreadth=4...)> >>> # Can grab kwimage.Detection object for any image >>> print(dmet.true_detections(gid=0)) <Detections(4)> >>> print(dmet.pred_detections(gid=0)) <Detections(7)>
Example
>>> # Test case with null predicted categories >>> dmet = DetectionMetrics.demo(nimgs=30, null_pred=1, classes=3, >>> nboxes=10, n_fp=3, box_noise=0.1, >>> with_probs=False) >>> dmet.gid_to_pred_dets[0].data >>> dmet.gid_to_true_dets[0].data >>> cfsn_vecs = dmet.confusion_vectors() >>> binvecs_ovr = cfsn_vecs.binarize_ovr() >>> binvecs_per = cfsn_vecs.binarize_classless() >>> measures_per = binvecs_per.measures() >>> measures_ovr = binvecs_ovr.measures() >>> print('measures_per = {!r}'.format(measures_per)) >>> print('measures_ovr = {!r}'.format(measures_ovr)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> measures_ovr['perclass'].draw(key='pr', fnum=2)
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> n_fp=(0, 1), n_fn=(0, 1), nimgs=32, nboxes=(0, 16), >>> classes=3, rng=0, newstyle=1, box_noise=0.5, cls_noise=0.0, score_noise=0.3, with_probs=False) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> summary = dmet.summarize(plot=True, title='DetectionMetrics summary demo', with_ovr=True, with_bin=False) >>> summary['bin_measures'] >>> kwplot.show_if_requested()
- summarize(out_dpath=None, plot=False, title='', with_bin='auto', with_ovr='auto')[source]¶
Example
>>> from kwcoco.metrics.confusion_vectors import * # NOQA >>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> n_fp=(0, 128), n_fn=(0, 4), nimgs=512, nboxes=(0, 32), >>> classes=3, rng=0) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> dmet.summarize(plot=True, title='DetectionMetrics summary demo') >>> kwplot.show_if_requested()
- class kwcoco.metrics.Measures(info)[source]¶
-
Holds accumulated confusion counts, and derived measures
Example
>>> from kwcoco.metrics.confusion_vectors import BinaryConfusionVectors # NOQA >>> binvecs = BinaryConfusionVectors.demo(n=100, p_error=0.5) >>> self = binvecs.measures() >>> print('self = {!r}'.format(self)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> self.draw(doclf=True) >>> self.draw(key='pr', pnum=(1, 2, 1)) >>> self.draw(key='roc', pnum=(1, 2, 2)) >>> kwplot.show_if_requested()
- property catname¶
- draw(key=None, prefix='', **kw)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors # NOQA >>> cfsn_vecs = ConfusionVectors.demo() >>> ovr_cfsn = cfsn_vecs.binarize_ovr(keyby='name') >>> self = ovr_cfsn.measures()['perclass'] >>> self.draw('mcc', doclf=True, fnum=1) >>> self.draw('pr', doclf=1, fnum=2) >>> self.draw('roc', doclf=1, fnum=3)
- summary_plot(fnum=1, title='', subplots='auto')[source]¶
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors # NOQA >>> cfsn_vecs = ConfusionVectors.demo(n=3, p_error=0.5) >>> binvecs = cfsn_vecs.binarize_classless() >>> self = binvecs.measures() >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> self.summary_plot() >>> kwplot.show_if_requested()
- classmethod demo(**kwargs)[source]¶
Create a demo Measures object for testing / demos
- Parameters
**kwargs – passed to
BinaryConfusionVectors.demo()
. some valid keys are: n, rng, p_rue, p_error, p_miss.
- classmethod combine(tocombine, precision=None, growth=None, thresh_bins=None)[source]¶
Combine binary confusion metrics
- Parameters
tocombine (List[Measures]) – a list of measures to combine into one
precision (int | None) – If specified rounds thresholds to this precision which can prevent a RAM explosion when combining a large number of measures. However, this is a lossy operation and will impact the underlying scores. NOTE: use
growth
instead.growth (int | None) – if specified this limits how much the resulting measures are allowed to grow by. If None, growth is unlimited. Otherwise, if growth is ‘max’, the growth is limited to the maximum length of an input. We might make this more numerical in the future.
thresh_bins (int | None) – Force this many threshold bins.
- Returns
kwcoco.metrics.confusion_measures.Measures
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> measures1 = Measures.demo(n=15) >>> measures2 = measures1 >>> tocombine = [measures1, measures2] >>> new_measures = Measures.combine(tocombine) >>> new_measures.reconstruct() >>> print('new_measures = {!r}'.format(new_measures)) >>> print('measures1 = {!r}'.format(measures1)) >>> print('measures2 = {!r}'.format(measures2)) >>> print(ub.urepr(measures1.__json__(), nl=1, sort=0)) >>> print(ub.urepr(measures2.__json__(), nl=1, sort=0)) >>> print(ub.urepr(new_measures.__json__(), nl=1, sort=0)) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.figure(fnum=1) >>> new_measures.summary_plot() >>> measures1.summary_plot() >>> measures1.draw('roc') >>> measures2.draw('roc') >>> new_measures.draw('roc')
Example
>>> # Demonstrate issues that can arrise from choosing a precision >>> # that is too low when combining metrics. Breakpoints >>> # between different metrics can get muddled, but choosing a >>> # precision that is too high can overwhelm memory. >>> from kwcoco.metrics.confusion_measures import * # NOQA >>> base = ub.map_vals(np.asarray, { >>> 'tp_count': [ 1, 1, 2, 2, 2, 2, 3], >>> 'fp_count': [ 0, 1, 1, 2, 3, 4, 5], >>> 'fn_count': [ 1, 1, 0, 0, 0, 0, 0], >>> 'tn_count': [ 5, 4, 4, 3, 2, 1, 0], >>> 'thresholds': [.0, .0, .0, .0, .0, .0, .0], >>> }) >>> # Make tiny offsets to thresholds >>> rng = kwarray.ensure_rng(0) >>> n = len(base['thresholds']) >>> offsets = [ >>> sorted(rng.rand(n) * 10 ** -rng.randint(4, 7))[::-1] >>> for _ in range(20) >>> ] >>> tocombine = [] >>> for offset in offsets: >>> base_n = base.copy() >>> base_n['thresholds'] += offset >>> measures_n = Measures(base_n).reconstruct() >>> tocombine.append(measures_n) >>> for precision in [6, 5, 2]: >>> combo = Measures.combine(tocombine, precision=precision).reconstruct() >>> print('precision = {!r}'.format(precision)) >>> print('combo = {}'.format(ub.urepr(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> for growth in [None, 'max', 'log', 'root', 'half']: >>> combo = Measures.combine(tocombine, growth=growth).reconstruct() >>> print('growth = {!r}'.format(growth)) >>> print('combo = {}'.format(ub.urepr(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> #print(combo.counts().pandas())
Example
>>> # Test case: combining a single measures should leave it unchanged >>> from kwcoco.metrics.confusion_measures import * # NOQA >>> measures = Measures.demo(n=40, p_true=0.2, p_error=0.4, p_miss=0.6) >>> df1 = measures.counts().pandas().fillna(0) >>> print(df1) >>> tocombine = [measures] >>> combo = Measures.combine(tocombine) >>> df2 = combo.counts().pandas().fillna(0) >>> print(df2) >>> assert np.allclose(df1, df2)
>>> combo = Measures.combine(tocombine, thresh_bins=2) >>> df3 = combo.counts().pandas().fillna(0) >>> print(df3)
>>> # I am NOT sure if this is correct or not >>> thresh_bins = 20 >>> combo = Measures.combine(tocombine, thresh_bins=thresh_bins) >>> df4 = combo.counts().pandas().fillna(0) >>> print(df4)
>>> combo = Measures.combine(tocombine, thresh_bins=np.linspace(0, 1, 20)) >>> df4 = combo.counts().pandas().fillna(0) >>> print(df4)
assert np.allclose(combo[‘thresholds’], measures[‘thresholds’]) assert np.allclose(combo[‘fp_count’], measures[‘fp_count’]) assert np.allclose(combo[‘tp_count’], measures[‘tp_count’]) assert np.allclose(combo[‘tp_count’], measures[‘tp_count’])
globals().update(xdev.get_func_kwargs(Measures.combine))
Example
>>> # Test degenerate case >>> from kwcoco.metrics.confusion_measures import * # NOQA >>> tocombine = [ >>> {'fn_count': [0.0], 'fp_count': [359980.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7747.0]}, >>> {'fn_count': [0.0], 'fp_count': [360849.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [424.0]}, >>> {'fn_count': [0.0], 'fp_count': [367003.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [991.0]}, >>> {'fn_count': [0.0], 'fp_count': [367976.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [1017.0]}, >>> {'fn_count': [0.0], 'fp_count': [676338.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7067.0]}, >>> {'fn_count': [0.0], 'fp_count': [676348.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7406.0]}, >>> {'fn_count': [0.0], 'fp_count': [676626.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [7858.0]}, >>> {'fn_count': [0.0], 'fp_count': [676693.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [10969.0]}, >>> {'fn_count': [0.0], 'fp_count': [677269.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11188.0]}, >>> {'fn_count': [0.0], 'fp_count': [677331.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11734.0]}, >>> {'fn_count': [0.0], 'fp_count': [677395.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11556.0]}, >>> {'fn_count': [0.0], 'fp_count': [677418.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11621.0]}, >>> {'fn_count': [0.0], 'fp_count': [677422.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [11424.0]}, >>> {'fn_count': [0.0], 'fp_count': [677648.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [9804.0]}, >>> {'fn_count': [0.0], 'fp_count': [677826.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [2470.0]}, >>> {'fn_count': [0.0], 'fp_count': [677834.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [2470.0]}, >>> {'fn_count': [0.0], 'fp_count': [677835.0], 'thresholds': [0.0], 'tn_count': [0.0], 'tp_count': [2470.0]}, >>> {'fn_count': [11123.0, 0.0], 'fp_count': [0.0, 676754.0], 'thresholds': [0.0002442002442002442, 0.0], 'tn_count': [676754.0, 0.0], 'tp_count': [2.0, 11125.0]}, >>> {'fn_count': [7738.0, 0.0], 'fp_count': [0.0, 676466.0], 'thresholds': [0.0002442002442002442, 0.0], 'tn_count': [676466.0, 0.0], 'tp_count': [0.0, 7738.0]}, >>> {'fn_count': [8653.0, 0.0], 'fp_count': [0.0, 676341.0], 'thresholds': [0.0002442002442002442, 0.0], 'tn_count': [676341.0, 0.0], 'tp_count': [0.0, 8653.0]}, >>> ] >>> thresh_bins = np.linspace(0, 1, 4) >>> combo = Measures.combine(tocombine, thresh_bins=thresh_bins).reconstruct() >>> print('tocombine = {}'.format(ub.urepr(tocombine, nl=2))) >>> print('thresh_bins = {!r}'.format(thresh_bins)) >>> print(ub.urepr(combo.__json__(), nl=1)) >>> for thresh_bins in [4096, 1]: >>> combo = Measures.combine(tocombine, thresh_bins=thresh_bins).reconstruct() >>> print('thresh_bins = {!r}'.format(thresh_bins)) >>> print('combo = {}'.format(ub.urepr(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> for precision in [6, 5, 2]: >>> combo = Measures.combine(tocombine, precision=precision).reconstruct() >>> print('precision = {!r}'.format(precision)) >>> print('combo = {}'.format(ub.urepr(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds']))) >>> for growth in [None, 'max', 'log', 'root', 'half']: >>> combo = Measures.combine(tocombine, growth=growth).reconstruct() >>> print('growth = {!r}'.format(growth)) >>> print('combo = {}'.format(ub.urepr(combo, nl=1))) >>> print('num_thresholds = {}'.format(len(combo['thresholds'])))
- class kwcoco.metrics.OneVsRestConfusionVectors(cx_to_binvecs, classes)[source]¶
Bases:
NiceRepr
Container for multiple one-vs-rest binary confusion vectors
- Variables
cx_to_binvecs –
classes –
Example
>>> from kwcoco.metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> nimgs=10, nboxes=(0, 10), n_fp=(0, 1), classes=3) >>> cfsn_vecs = dmet.confusion_vectors() >>> self = cfsn_vecs.binarize_ovr(keyby='name') >>> print('self = {!r}'.format(self))
- classmethod demo()[source]¶
- Parameters
**kwargs – See
kwcoco.metrics.DetectionMetrics.demo()
- Returns
ConfusionVectors
- measures(stabalize_thresh=7, fp_cutoff=None, monotonic_ppv=True, ap_method='pycocotools')[source]¶
Creates binary confusion measures for every one-versus-rest category.
- Parameters
stabalize_thresh (int) – if fewer than this many data points inserts dummy stabilization data so curves can still be drawn. Default to 7.
fp_cutoff (int | None) – maximum number of false positives in the truncated roc curves. The default
None
is equivalent tofloat('inf')
monotonic_ppv (bool) – if True ensures that precision is always increasing as recall decreases. This is done in pycocotools scoring, but I’m not sure its a good idea. Default to True.
Example
>>> self = OneVsRestConfusionVectors.demo() >>> thresh_result = self.measures()['perclass']
- class kwcoco.metrics.PerClass_Measures(cx_to_info)[source]¶
-
- draw(key='mcc', prefix='', **kw)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> from kwcoco.metrics.confusion_vectors import ConfusionVectors # NOQA >>> cfsn_vecs = ConfusionVectors.demo() >>> ovr_cfsn = cfsn_vecs.binarize_ovr(keyby='name') >>> self = ovr_cfsn.measures()['perclass'] >>> self.draw('mcc', doclf=True, fnum=1) >>> self.draw('pr', doclf=1, fnum=2) >>> self.draw('roc', doclf=1, fnum=3)
- summary_plot(fnum=1, title='', subplots='auto')[source]¶
CommandLine
python ~/code/kwcoco/kwcoco/metrics/confusion_measures.py PerClass_Measures.summary_plot --show
Example
>>> from kwcoco.metrics.confusion_measures import * # NOQA >>> from kwcoco.metrics.detect_metrics import DetectionMetrics >>> dmet = DetectionMetrics.demo( >>> n_fp=(0, 1), n_fn=(0, 3), nimgs=32, nboxes=(0, 32), >>> classes=3, rng=0, newstyle=1, box_noise=0.7, cls_noise=0.2, score_noise=0.3, with_probs=False) >>> cfsn_vecs = dmet.confusion_vectors() >>> ovr_cfsn = cfsn_vecs.binarize_ovr(keyby='name', ignore_classes=['vector', 'raster']) >>> self = ovr_cfsn.measures()['perclass'] >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> import seaborn as sns >>> sns.set() >>> self.summary_plot(title='demo summary_plot ovr', subplots=['pr', 'roc']) >>> kwplot.show_if_requested() >>> self.summary_plot(title='demo summary_plot ovr', subplots=['mcc', 'acc'], fnum=2)
kwcoco.util package¶
Subpackages¶
Functionality has been ported to delayed_image
- class kwcoco.util.delayed_ops.DelayedArray(subdata=None)[source]¶
Bases:
DelayedUnaryOperation
A generic NDArray.
- Parameters
subdata (DelayedArray)
- property shape¶
Returns: None | Tuple[int | None, …]
- class kwcoco.util.delayed_ops.DelayedAsXarray(subdata=None, dsize=None, channels=None)[source]¶
Bases:
DelayedImage
Casts the data to an xarray object in the finalize step
- Example;
>>> # xdoctest: +REQUIRES(module:xarray) >>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image import DelayedLoad >>> # without channels >>> base = DelayedLoad.demo(dsize=(16, 16)).prepare() >>> self = base.as_xarray() >>> final = self._validate().finalize() >>> assert len(final.coords) == 0 >>> assert final.dims == ('y', 'x', 'c') >>> # with channels >>> base = DelayedLoad.demo(dsize=(16, 16), channels='r|g|b').prepare() >>> self = base.as_xarray() >>> final = self._validate().finalize() >>> assert final.coords.indexes['c'].tolist() == ['r', 'g', 'b'] >>> assert final.dims == ('y', 'x', 'c')
- Parameters
subdata (DelayedArray)
dsize (None | Tuple[int | None, int | None]) – overrides subdata dsize
channels (None | int | FusedChannelSpec) – overrides subdata channels
- class kwcoco.util.delayed_ops.DelayedChannelConcat(parts, dsize=None)[source]¶
Bases:
ImageOpsMixin
,DelayedConcat
Stacks multiple arrays together.
Example
>>> from delayed_image import * # NOQA >>> from delayed_image.delayed_leafs import DelayedLoad >>> dsize = (307, 311) >>> c1 = DelayedNans(dsize=dsize, channels='foo') >>> c2 = DelayedLoad.demo('astro', dsize=dsize, channels='R|G|B').prepare() >>> cat = DelayedChannelConcat([c1, c2]) >>> warped_cat = cat.warp({'scale': 1.07}, dsize=(328, 332)) >>> warped_cat._validate() >>> warped_cat.finalize()
Example
>>> # Test case that failed in initial implementation >>> # Due to incorrectly pushing channel selection under the concat >>> from delayed_image import * # NOQA >>> import kwimage >>> fpath = kwimage.grab_test_image_fpath() >>> base1 = DelayedLoad(fpath, channels='r|g|b').prepare() >>> base2 = DelayedLoad(fpath, channels='x|y|z').prepare().scale(2) >>> base3 = DelayedLoad(fpath, channels='i|j|k').prepare().scale(2) >>> bands = [base2, base1[:, :, 0].scale(2).evaluate(), >>> base1[:, :, 1].evaluate().scale(2), >>> base1[:, :, 2].evaluate().scale(2), base3] >>> delayed = DelayedChannelConcat(bands) >>> delayed = delayed.warp({'scale': 2}) >>> delayed = delayed[0:100, 0:55, [0, 2, 4]] >>> delayed.write_network_text() >>> delayed.optimize()
- Parameters
parts (List[DelayedArray]) – data to concat
dsize (Tuple[int, int] | None) – size if known a-priori
- property channels¶
Returns: None | FusedChannelSpec
- property shape¶
Returns: Tuple[int | None, int | None, int | None]
- take_channels(channels)[source]¶
This method returns a subset of the vision data with only the specified bands / channels.
- Parameters
channels (List[int] | slice | channel_spec.FusedChannelSpec) – List of integers indexes, a slice, or a channel spec, which is typically a pipe (|) delimited list of channel codes. See
ChannelSpec
for more detials.- Returns
a delayed vision operation that only operates on the following channels.
- Return type
Example
>>> # xdoctest: +REQUIRES(module:kwcoco) >>> from delayed_image.delayed_nodes import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> self = delayed = dset.coco_image(1).delay() >>> channels = 'B11|B8|B1|B10' >>> new = self.take_channels(channels)
Example
>>> # xdoctest: +REQUIRES(module:kwcoco) >>> # Complex case >>> import kwcoco >>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image.delayed_leafs import DelayedLoad >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> delayed = dset.coco_image(1).delay() >>> astro = DelayedLoad.demo('astro', channels='r|g|b').prepare() >>> aligned = astro.warp(kwimage.Affine.scale(600 / 512), dsize='auto') >>> self = combo = DelayedChannelConcat(delayed.parts + [aligned]) >>> channels = 'B1|r|B8|g' >>> new = self.take_channels(channels) >>> new_cropped = new.crop((slice(10, 200), slice(12, 350))) >>> new_opt = new_cropped.optimize() >>> datas = new_opt.finalize() >>> if 1: >>> new_cropped.write_network_text(with_labels='name') >>> new_opt.write_network_text(with_labels='name') >>> vizable = kwimage.normalize_intensity(datas, axis=2) >>> self._validate() >>> new._validate() >>> new_cropped._validate() >>> new_opt._validate() >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> stacked = kwimage.stack_images(vizable.transpose(2, 0, 1)) >>> kwplot.imshow(stacked)
Example
>>> # xdoctest: +REQUIRES(module:kwcoco) >>> # Test case where requested channel does not exist >>> import kwcoco >>> from delayed_image.delayed_nodes import * # NOQA >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral', use_cache=1, verbose=100) >>> self = delayed = dset.coco_image(1).delay() >>> channels = 'B1|foobar|bazbiz|B8' >>> new = self.take_channels(channels) >>> new_cropped = new.crop((slice(10, 200), slice(12, 350))) >>> fused = new_cropped.finalize() >>> assert fused.shape == (190, 338, 4) >>> assert np.all(np.isnan(fused[..., 1:3])) >>> assert not np.any(np.isnan(fused[..., 0])) >>> assert not np.any(np.isnan(fused[..., 3]))
- property num_overviews¶
Returns: int
- undo_warps(remove=None, retain=None, squash_nans=False, return_warps=False)[source]¶
Attempts to “undo” warping for each concatenated channel and returns a list of delayed operations that are cropped to the right regions.
Typically you will retrain offset, theta, and shear to remove scale. This ensures the data is spatially aligned up to a scale factor.
- Parameters
remove (List[str]) – if specified, list components of the warping to remove. Can include: “offset”, “scale”, “shearx”, “theta”. Typically set this to [“scale”].
retain (List[str]) – if specified, list components of the warping to retain. Can include: “offset”, “scale”, “shearx”, “theta”. Mutually exclusive with “remove”. If neither remove or retain is specified, retain is set to
[]
.squash_nans (bool) – if True, pure nan channels are squashed into a 1x1 array as they do not correspond to a real source.
return_warps (bool) – if True, return the transforms we applied. I.e. the transform from the
self
to the returnedparts
. This is useful when you need to warp objects in the original space into the jagged space.
- Returns
The List[DelayedImage] are the
parts
i.e. the new images with the warping undone. The List[kwimage.Affine]: is the transforms fromself
to each item inparts
- Return type
List[DelayedImage] | Tuple[List[DelayedImage] | List[kwimage.Affine]]
Example
>>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image.delayed_leafs import DelayedLoad >>> from delayed_image.delayed_leafs import DelayedNans >>> import ubelt as ub >>> import kwimage >>> import kwarray >>> import numpy as np >>> # Demo case where we have different channels at different resolutions >>> base = DelayedLoad.demo(channels='r|g|b').prepare().dequantize({'quant_max': 255}) >>> bandR = base[:, :, 0].scale(100 / 512)[:, :-50].evaluate() >>> bandG = base[:, :, 1].scale(300 / 512).warp({'theta': np.pi / 8, 'about': (150, 150)}).evaluate() >>> bandB = base[:, :, 2].scale(600 / 512)[:150, :].evaluate() >>> bandN = DelayedNans((600, 600), channels='N') >>> # Make a concatenation of images of different underlying native resolutions >>> delayed_vidspace = DelayedChannelConcat([ >>> bandR.scale(6, dsize=(600, 600)).optimize(), >>> bandG.warp({'theta': -np.pi / 8, 'about': (150, 150)}).scale(2, dsize=(600, 600)).optimize(), >>> bandB.scale(1, dsize=(600, 600)).optimize(), >>> bandN, >>> ]).warp({'scale': 0.7}).optimize() >>> vidspace_box = kwimage.Boxes([[100, 10, 270, 160]], 'ltrb') >>> vidspace_poly = vidspace_box.to_polygons()[0] >>> vidspace_slice = vidspace_box.to_slices()[0] >>> self = delayed_vidspace[vidspace_slice].optimize() >>> print('--- Aligned --- ') >>> self.write_network_text() >>> squash_nans = True >>> undone_all_parts, tfs1 = self.undo_warps(squash_nans=squash_nans, return_warps=True) >>> undone_scale_parts, tfs2 = self.undo_warps(remove=['scale'], squash_nans=squash_nans, return_warps=True) >>> stackable_aligned = self.finalize().transpose(2, 0, 1) >>> stackable_undone_all = [] >>> stackable_undone_scale = [] >>> print('--- Undone All --- ') >>> for undone in undone_all_parts: ... undone.write_network_text() ... stackable_undone_all.append(undone.finalize()) >>> print('--- Undone Scale --- ') >>> for undone in undone_scale_parts: ... undone.write_network_text() ... stackable_undone_scale.append(undone.finalize()) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> canvas0 = kwimage.stack_images(stackable_aligned, axis=1) >>> canvas1 = kwimage.stack_images(stackable_undone_all, axis=1) >>> canvas2 = kwimage.stack_images(stackable_undone_scale, axis=1) >>> canvas0 = kwimage.draw_header_text(canvas0, 'Rescaled Aligned Channels') >>> canvas1 = kwimage.draw_header_text(canvas1, 'Unwarped Channels') >>> canvas2 = kwimage.draw_header_text(canvas2, 'Unscaled Channels') >>> canvas = kwimage.stack_images([canvas0, canvas1, canvas2], axis=0) >>> canvas = kwimage.fill_nans_with_checkers(canvas) >>> kwplot.imshow(canvas)
- class kwcoco.util.delayed_ops.DelayedConcat(parts, axis)[source]¶
Bases:
DelayedNaryOperation
Stacks multiple arrays together.
- Parameters
parts (List[DelayedArray]) – data to concat
axis (int) – axes to concat on
- property shape¶
Returns: None | Tuple[int | None, …]
- class kwcoco.util.delayed_ops.DelayedCrop(subdata, space_slice=None, chan_idxs=None)[source]¶
Bases:
DelayedImage
Crops an image along integer pixel coordinates.
Example
>>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image import DelayedLoad >>> base = DelayedLoad.demo(dsize=(16, 16)).prepare() >>> # Test Fuse Crops Space Only >>> crop1 = base[4:12, 0:16] >>> self = crop1[2:6, 0:8] >>> opt = self._opt_fuse_crops() >>> self.write_network_text() >>> opt.write_network_text() >>> # >>> # Test Channel Select Via Index >>> self = base[:, :, [0]] >>> self.write_network_text() >>> final = self._finalize() >>> assert final.shape == (16, 16, 1) >>> assert base[:, :, [0, 1]].finalize().shape == (16, 16, 2) >>> assert base[:, :, [2, 0, 1]].finalize().shape == (16, 16, 3)
Example
>>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image import DelayedLoad >>> base = DelayedLoad.demo(dsize=(16, 16)).prepare() >>> # Test Discontiguous Channel Select Via Index >>> self = base[:, :, [0, 2]] >>> self.write_network_text() >>> final = self._finalize() >>> assert final.shape == (16, 16, 2)
- Parameters
subdata (DelayedArray) – data to operate on
space_slice (Tuple[slice, slice]) – if speficied, take this y-slice and x-slice.
chan_idxs (List[int] | None) – if specified, take these channels / bands
- optimize()[source]¶
- Returns
DelayedImage
Example
>>> # Test optimize nans >>> from delayed_image import DelayedNans >>> import kwimage >>> base = DelayedNans(dsize=(100, 100), channels='a|b|c') >>> self = base[0:10, 0:5] >>> # Should simply return a new nan generator >>> new = self.optimize() >>> self.write_network_text() >>> new.write_network_text() >>> assert len(new.as_graph().nodes) == 1
- _opt_fuse_crops()[source]¶
Combine two consecutive crops into a single operation.
Example
>>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image.delayed_leafs import DelayedLoad >>> base = DelayedLoad.demo(dsize=(16, 16)).prepare() >>> # Test Fuse Crops Space Only >>> crop1 = base[4:12, 0:16] >>> crop2 = self = crop1[2:6, 0:8] >>> opt = crop2._opt_fuse_crops() >>> self.write_network_text() >>> opt.write_network_text() >>> opt._validate() >>> self._validate()
Example
>>> # Test Fuse Crops Channels Only >>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image.delayed_leafs import DelayedLoad >>> base = DelayedLoad.demo(dsize=(16, 16)).prepare() >>> crop1 = base.crop(chan_idxs=[0, 2, 1]) >>> crop2 = crop1.crop(chan_idxs=[1, 2]) >>> crop3 = self = crop2.crop(chan_idxs=[0, 1]) >>> opt = self._opt_fuse_crops()._opt_fuse_crops() >>> self.write_network_text() >>> opt.write_network_text() >>> finalB = base._validate()._finalize() >>> final1 = opt._validate()._finalize() >>> final2 = self._validate()._finalize() >>> assert np.all(final2[..., 0] == finalB[..., 2]) >>> assert np.all(final2[..., 1] == finalB[..., 1]) >>> assert np.all(final2[..., 0] == final1[..., 0]) >>> assert np.all(final2[..., 1] == final1[..., 1])
Example
>>> # Test Fuse Crops Space And Channels >>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image.delayed_leafs import DelayedLoad >>> base = DelayedLoad.demo(dsize=(16, 16)).prepare() >>> crop1 = base[4:12, 0:16, [1, 2]] >>> self = crop1[2:6, 0:8, [1]] >>> opt = self._opt_fuse_crops() >>> self.write_network_text() >>> opt.write_network_text() >>> self._validate() >>> crop1._validate()
- _opt_warp_after_crop()[source]¶
If the child node is a warp, move it after the crop.
- This is more efficient because:
The crop is closer to the load.
we are warping with less data.
Example
>>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image.delayed_leafs import DelayedLoad >>> fpath = kwimage.grab_test_image_fpath() >>> node0 = DelayedLoad(fpath, channels='r|g|b').prepare() >>> node1 = node0.warp({'scale': 0.432, >>> 'theta': np.pi / 3, >>> 'about': (80, 80), >>> 'shearx': .3, >>> 'offset': (-50, -50)}) >>> node2 = node1[10:50, 1:40] >>> self = node2 >>> new_outer = node2._opt_warp_after_crop() >>> print(ub.urepr(node2.nesting(), nl=-1, sort=0)) >>> print(ub.urepr(new_outer.nesting(), nl=-1, sort=0)) >>> final0 = self._finalize() >>> final1 = new_outer._finalize() >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(final0, pnum=(2, 2, 1), fnum=1, title='raw') >>> kwplot.imshow(final1, pnum=(2, 2, 2), fnum=1, title='optimized')
Example
>>> # xdoctest: +REQUIRES(module:osgeo) >>> from delayed_image import * # NOQA >>> from delayed_image.delayed_leafs import DelayedLoad >>> fpath = kwimage.grab_test_image_fpath(overviews=3) >>> node0 = DelayedLoad(fpath, channels='r|g|b').prepare() >>> node1 = node0.warp({'scale': 1000 / 512}) >>> node2 = node1[250:750, 0:500] >>> self = node2 >>> new_outer = node2._opt_warp_after_crop() >>> print(ub.urepr(node2.nesting(), nl=-1, sort=0)) >>> print(ub.urepr(new_outer.nesting(), nl=-1, sort=0))
- class kwcoco.util.delayed_ops.DelayedDequantize(subdata, quantization)[source]¶
Bases:
DelayedImage
Rescales image intensities from int to floats.
The output is usually between 0 and 1. This also handles transforming nodata into nan values.
- Parameters
subdata (DelayedArray) – data to operate on
quantization (Dict) – see
delayed_image.helpers.dequantize()
- optimize()[source]¶
- Returns
DelayedImage
Example
>>> # Test a case that caused an error in development >>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image import DelayedLoad >>> fpath = kwimage.grab_test_image_fpath() >>> base = DelayedLoad(fpath, channels='r|g|b').prepare() >>> quantization = {'quant_max': 255, 'nodata': 0} >>> self = base.get_overview(1).dequantize(quantization) >>> self.write_network_text() >>> opt = self.optimize()
- class kwcoco.util.delayed_ops.DelayedFrameStack(parts)[source]¶
Bases:
DelayedStack
Stacks multiple arrays together.
- Parameters
parts (List[DelayedArray]) – data to stack
- class kwcoco.util.delayed_ops.DelayedIdentity(data, channels=None, dsize=None)[source]¶
Bases:
DelayedImageLeaf
Returns an ndarray as-is
Example
self = DelayedNans((10, 10), channel_spec.FusedChannelSpec.coerce(‘rgb’)) region_slices = (slice(5, 10), slice(1, 12)) delayed = self.crop(region_slices)
Example
>>> from delayed_image import * # NOQA >>> arr = kwimage.checkerboard() >>> self = DelayedIdentity(arr, channels='gray') >>> warp = self.warp({'scale': 1.07}) >>> warp.optimize().finalize()
- class kwcoco.util.delayed_ops.DelayedImage(subdata=None, dsize=None, channels=None)[source]¶
Bases:
ImageOpsMixin
,DelayedArray
For the case where an array represents a 2D image with multiple channels
- Parameters
subdata (DelayedArray)
dsize (None | Tuple[int | None, int | None]) – overrides subdata dsize
channels (None | int | FusedChannelSpec) – overrides subdata channels
- property shape¶
Returns: None | Tuple[int | None, int | None, int | None]
- property num_channels¶
Returns: None | int
- property dsize¶
Returns: None | Tuple[int | None, int | None]
- property channels¶
Returns: None | FusedChannelSpec
- property num_overviews¶
Returns: int
- take_channels(channels)[source]¶
This method returns a subset of the vision data with only the specified bands / channels.
- Parameters
channels (List[int] | slice | channel_spec.FusedChannelSpec) – List of integers indexes, a slice, or a channel spec, which is typically a pipe (|) delimited list of channel codes. See ChannelSpec for more detials.
- Returns
a new delayed load with a fused take channel operation
- Return type
Note
The channel subset must exist here or it will raise an error. A better implementation (via pymbolic) might be able to do better
Example
>>> # >>> # Test Channel Select Via Code >>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image import DelayedLoad >>> self = DelayedLoad.demo(dsize=(16, 16), channels='r|g|b').prepare() >>> channels = 'r|b' >>> new = self.take_channels(channels)._validate() >>> new2 = new[:, :, [1, 0]]._validate() >>> new3 = new2[:, :, [1]]._validate()
Example
>>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image import DelayedLoad >>> self = DelayedLoad.demo('astro').prepare() >>> channels = [2, 0] >>> new = self.take_channels(channels) >>> new3 = new.take_channels([1, 0]) >>> new._validate() >>> new3._validate()
>>> final1 = self.finalize() >>> final2 = new.finalize() >>> final3 = new3.finalize() >>> assert np.all(final1[..., 2] == final2[..., 0]) >>> assert np.all(final1[..., 0] == final2[..., 1]) >>> assert final2.shape[2] == 2
>>> assert np.all(final1[..., 2] == final3[..., 1]) >>> assert np.all(final1[..., 0] == final3[..., 0]) >>> assert final3.shape[2] == 2
Example
>>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image import DelayedLoad >>> self = DelayedLoad.demo(dsize=(16, 16), channels='r|g|b').prepare() >>> # Case where a channel doesn't exist >>> channels = 'r|b|magic' >>> new = self.take_channels(channels) >>> assert len(new.parts) == 2 >>> new._validate()
- undo_warp(remove=None, retain=None, squash_nans=False, return_warp=False)[source]¶
Attempts to “undo” warping for each concatenated channel and returns a list of delayed operations that are cropped to the right regions.
Typically you will retrain offset, theta, and shear to remove scale. This ensures the data is spatially aligned up to a scale factor.
- Parameters
remove (List[str]) – if specified, list components of the warping to remove. Can include: “offset”, “scale”, “shearx”, “theta”. Typically set this to [“scale”].
retain (List[str]) – if specified, list components of the warping to retain. Can include: “offset”, “scale”, “shearx”, “theta”. Mutually exclusive with “remove”. If neither remove or retain is specified, retain is set to
[]
.squash_nans (bool) – if True, pure nan channels are squashed into a 1x1 array as they do not correspond to a real source.
return_warp (bool) – if True, return the transform we applied. This is useful when you need to warp objects in the original space into the jagged space.
- SeeAlso:
DelayedChannelConcat.undo_warps
Example
>>> # Test similar to undo_warps, but on each channel separately >>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image.delayed_leafs import DelayedLoad >>> from delayed_image.delayed_leafs import DelayedNans >>> import ubelt as ub >>> import kwimage >>> import kwarray >>> import numpy as np >>> # Demo case where we have different channels at different resolutions >>> base = DelayedLoad.demo(channels='r|g|b').prepare().dequantize({'quant_max': 255}) >>> bandR = base[:, :, 0].scale(100 / 512)[:, :-50].evaluate() >>> bandG = base[:, :, 1].scale(300 / 512).warp({'theta': np.pi / 8, 'about': (150, 150)}).evaluate() >>> bandB = base[:, :, 2].scale(600 / 512)[:150, :].evaluate() >>> bandN = DelayedNans((600, 600), channels='N') >>> B0 = bandR.scale(6, dsize=(600, 600)).optimize() >>> B1 = bandG.warp({'theta': -np.pi / 8, 'about': (150, 150)}).scale(2, dsize=(600, 600)).optimize() >>> B2 = bandB.scale(1, dsize=(600, 600)).optimize() >>> vidspace_box = kwimage.Boxes([[-10, -10, 270, 160]], 'ltrb').scale(1 / .7).quantize() >>> vidspace_poly = vidspace_box.to_polygons()[0] >>> vidspace_slice = vidspace_box.to_slices()[0] >>> # Test with the padded crop >>> self0 = B0.crop(vidspace_slice, wrap=0, clip=0, pad=10).optimize() >>> self1 = B1.crop(vidspace_slice, wrap=0, clip=0, pad=10).optimize() >>> self2 = B2.crop(vidspace_slice, wrap=0, clip=0, pad=10).optimize() >>> parts = [self0, self1, self2] >>> # Run the undo on each channel >>> undone_scale_parts = [d.undo_warp(remove=['scale']) for d in parts] >>> print('--- Aligned --- ') >>> stackable_aligned = [] >>> for d in parts: >>> d.write_network_text() >>> stackable_aligned.append(d.finalize()) >>> print('--- Undone Scale --- ') >>> stackable_undone_scale = [] >>> for undone in undone_scale_parts: ... undone.write_network_text() ... stackable_undone_scale.append(undone.finalize()) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> canvas0 = kwimage.stack_images(stackable_aligned, axis=1, pad=5, bg_value='kw_darkgray') >>> canvas2 = kwimage.stack_images(stackable_undone_scale, axis=1, pad=5, bg_value='kw_darkgray') >>> canvas0 = kwimage.draw_header_text(canvas0, 'Rescaled Channels') >>> canvas2 = kwimage.draw_header_text(canvas2, 'Native Scale Channels') >>> canvas = kwimage.stack_images([canvas0, canvas2], axis=0, bg_value='kw_darkgray') >>> canvas = kwimage.fill_nans_with_checkers(canvas) >>> kwplot.imshow(canvas)
- class kwcoco.util.delayed_ops.DelayedImageLeaf(subdata=None, dsize=None, channels=None)[source]¶
Bases:
DelayedImage
- Parameters
subdata (DelayedArray)
dsize (None | Tuple[int | None, int | None]) – overrides subdata dsize
channels (None | int | FusedChannelSpec) – overrides subdata channels
- class kwcoco.util.delayed_ops.DelayedLoad(fpath, channels=None, dsize=None, nodata_method=None)[source]¶
Bases:
DelayedImageLeaf
Points to an image on disk to be loaded.
This is the starting point for most delayed operations. Disk IO is avoided until the
finalize
operation is called. Callingprepare
can read image headers if metadata like the image width, height, and number of channels is not provided, but most operations can be performed while these are still unknown.If a gdal backend is available, and the underlying image is in the appropriate formate (e.g. COG), finalize will return a lazy reference that enables fast overviews and crops. For image formats that do not allow for tiling / overviews, then there is no way to avoid reading entire image as an ndarray.
Example
>>> from delayed_image import * # NOQA >>> self = DelayedLoad.demo(dsize=(16, 16)).prepare() >>> data1 = self.finalize()
Example
>>> # xdoctest: +REQUIRES(module:osgeo) >>> # Demo code to develop support for overviews >>> from delayed_image import * # NOQA >>> import kwimage >>> import ubelt as ub >>> fpath = kwimage.grab_test_image_fpath(overviews=3) >>> self = DelayedLoad(fpath, channels='r|g|b').prepare() >>> print(f'self={self}') >>> print('self.meta = {}'.format(ub.repr2(self.meta, nl=1))) >>> quantization = { >>> 'quant_max': 255, >>> 'nodata': 0, >>> } >>> node0 = self >>> node1 = node0.get_overview(2) >>> node2 = node1[13:900, 11:700] >>> node3 = node2.dequantize(quantization) >>> node4 = node3.warp({'scale': 0.05}) >>> # >>> data0 = node0._validate().finalize() >>> data1 = node1._validate().finalize() >>> data2 = node2._validate().finalize() >>> data3 = node3._validate().finalize() >>> data4 = node4._validate().finalize() >>> node4.write_network_text()
Example
>>> # xdoctest: +REQUIRES(module:osgeo) >>> # Test delayed ops with int16 and nodata values >>> from delayed_image import * # NOQA >>> import kwimage >>> from delayed_image.helpers import quantize_float01 >>> import ubelt as ub >>> dpath = ub.Path.appdir('delayed_image/tests/test_delay_nodata').ensuredir() >>> fpath = dpath / 'data.tif' >>> data = kwimage.ensure_float01(kwimage.grab_test_image()) >>> poly = kwimage.Polygon.random(rng=321032).scale(data.shape[0]) >>> poly.fill(data, np.nan) >>> data_uint16, quantization = quantize_float01(data) >>> nodata = quantization['nodata'] >>> kwimage.imwrite(fpath, data_uint16, nodata=nodata, backend='gdal', overviews=3) >>> # Test loading the data >>> self = DelayedLoad(fpath, channels='r|g|b', nodata_method='float').prepare() >>> node0 = self >>> node1 = node0.dequantize(quantization) >>> node2 = node1.warp({'scale': 0.51}, interpolation='lanczos') >>> node3 = node2[13:900, 11:700] >>> node4 = node3.warp({'scale': 0.9}, interpolation='lanczos') >>> node4.write_network_text() >>> node5 = node4.optimize() >>> node5.write_network_text() >>> node6 = node5.warp({'scale': 8}, interpolation='lanczos').optimize() >>> node6.write_network_text() >>> # >>> data0 = node0._validate().finalize() >>> data1 = node1._validate().finalize() >>> data2 = node2._validate().finalize() >>> data3 = node3._validate().finalize() >>> data4 = node4._validate().finalize() >>> data5 = node5._validate().finalize() >>> data6 = node6._validate().finalize() >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> stack1 = kwimage.stack_images([data1, data2, data3, data4, data5]) >>> stack2 = kwimage.stack_images([stack1, data6], axis=1) >>> kwplot.imshow(stack2)
- Parameters
fpath (str | PathLike) – URI pointing at the image data to load
channels (int | str | FusedChannelSpec | None) – the underlying channels of the image if known a-priori
dsize (Tuple[int, int]) – The width / height of the image if known a-priori
nodata_method (str | None) – How to handle nodata values in the file itself. Can be “auto”, “float”, or “ma”.
- property fpath¶
- classmethod demo(key='astro', channels=None, dsize=None, nodata_method=None, overviews=None)[source]¶
Creates a demo DelayedLoad node that points to a file generated by
kwimage.grab_test_image_fpath()
.If metadata like dsize and channels are not provided, then the
prepare()
can be used to auto-populate them at the cost of the disk IO to read image headers.- Parameters
key (str) – which test image to grab. Valid choices are: astro - an astronaught carl - Carl Sagan paraview - ParaView logo stars - picture of stars in the sky
channels (str) – if specified, these channels will be stored in the delayed load metadata. Note: these are not auto-populated. Usually the key corresponds to 3-channel data,
dsize (None | Tuple[int, int]) – if specified, we will return a variant of the data with the specific dsize
nodata_method (str | None) – How to handle nodata values in the file itself. Can be “auto”, “float”, or “ma”.
overviews (None | int) – if specified, will return a variant of the data with overviews
- Returns
DelayedLoad
Example
>>> from delayed_image.delayed_leafs import * # NOQA >>> import delayed_image >>> delayed = delayed_image.DelayedLoad.demo() >>> print(f'delayed={delayed}') >>> delayed.prepare() >>> print(f'delayed={delayed}') >>> delayed = DelayedLoad.demo(channels='r|g|b', nodata_method='float') >>> print(f'delayed={delayed}') >>> delayed.prepare() >>> print(f'delayed={delayed}') >>> delayed.finalize()
- prepare()[source]¶
If metadata is missing, perform minimal IO operations in order to prepopulate metadata that could help us better optimize the operation tree.
- Returns
DelayedLoad
- _finalize()[source]¶
- Returns
ArrayLike
Example
>>> # Check difference between finalize and _finalize >>> from delayed_image.delayed_leafs import * # NOQA >>> self = DelayedLoad.demo().prepare() >>> final_arr = self.finalize() >>> assert isinstance(final_arr, np.ndarray), 'finalize should always return an array' >>> final_ref = self._finalize() >>> if self.lazy_ref is not NotImplemented: >>> assert not isinstance(final_ref, np.ndarray), ( >>> 'A pure load with gdal should return a reference that is ' >>> 'similiar to but not quite an array')
- class kwcoco.util.delayed_ops.DelayedNans(dsize=None, channels=None)[source]¶
Bases:
DelayedImageLeaf
Constructs nan channels as needed
Example
self = DelayedNans((10, 10), channel_spec.FusedChannelSpec.coerce(‘rgb’)) region_slices = (slice(5, 10), slice(1, 12)) delayed = self.crop(region_slices)
Example
>>> from delayed_image import * # NOQA >>> dsize = (307, 311) >>> c1 = DelayedNans(dsize=dsize, channels='foo') >>> c2 = DelayedLoad.demo('astro', dsize=dsize, channels='R|G|B').prepare() >>> cat = DelayedChannelConcat([c1, c2]) >>> warped_cat = cat.warp({'scale': 1.07}, dsize=(328, 332))._validate() >>> warped_cat._validate().optimize().finalize()
- class kwcoco.util.delayed_ops.DelayedNaryOperation(parts)[source]¶
Bases:
DelayedOperation
For operations that have multiple input arrays
- class kwcoco.util.delayed_ops.DelayedOperation[source]¶
Bases:
NiceRepr
- as_graph(fields='auto')[source]¶
Builds the underlying graph structure as a networkx graph with human readable labels.
- Parameters
fields (str | List[str]) – Add the specified fields as labels. If ‘auto’ then does somthing “reasonable”. If ‘all’ then shows everything. TODO: only implemented for “auto” and “all”, implement general field selection (PR Wanted).
- Returns
networkx.DiGraph
- _traverse()[source]¶
A flat list of all descendent nodes and their parents
- Yields
Tuple[None | DelayedOperation, DelayedOperation] – tules of parent / child nodes. Discarding the parents will be a list of all nodes.
- _leafs()¶
Iterates over all leafs in the tree.
- Yields
Tuple[DelayedOperation]
- _leaf_paths()[source]¶
Builds all independent paths to leafs.
- Yields
Tuple[DelayedOperation, DelayedOperation] – The leaf, and the path to it,
Example
>>> from delayed_image import demo >>> self = demo.non_aligned_leafs() >>> for leaf, part in list(self._leaf_paths()): ... leaf.write_network_text() ... part.write_network_text()
Example
>>> from delayed_image import demo >>> import delayed_image >>> orig = delayed_image.DelayedLoad.demo().prepare() >>> part1 = orig[0:100, 0:100].scale(2, dsize=(128, 128)) >>> part2 = delayed_image.DelayedNans(dsize=(128, 128)) >>> self = delayed_image.DelayedChannelConcat([part2, part1]) >>> for leaf, part in list(self._leaf_paths()): ... leaf.write_network_text() ... part.write_network_text()
- print_graph(fields='auto', with_labels=True, rich='auto', vertical_chains=True)[source]¶
Alias for write_network_text
- property shape¶
Returns: None | Tuple[int | None, …]
- prepare()[source]¶
If metadata is missing, perform minimal IO operations in order to prepopulate metadata that could help us better optimize the operation tree.
- Returns
DelayedOperation
- _finalize()[source]¶
This is the method that new nodes should overload.
Conceptually this works just like the finalize method with the exception that it happens at every node in the tree, whereas the public facing method only happens once, calls this, and is able to do one-time pre and post operations.
- Returns
ArrayLike
- finalize(prepare=True, optimize=True, **kwargs)[source]¶
Evaluate the operation tree in full.
- Parameters
prepare (bool) – ensure prepare is called to ensure metadata exists if possible before optimizing. Defaults to True.
optimize (bool) – ensure the graph is optimized before loading. Default to True.
**kwargs – for backwards compatibility, these will allow for in-place modification of select nested parameters.
- Returns
ArrayLike
Notes
Do not overload this method. Overload
DelayedOperation._finalize()
instead.
- class kwcoco.util.delayed_ops.DelayedOverview(subdata, overview)[source]¶
Bases:
DelayedImage
Downsamples an image by a factor of two.
If the underlying image being loaded has precomputed overviews it simply loads these instead of downsampling the original image, which is more efficient.
Example
>>> # xdoctest: +REQUIRES(module:osgeo) >>> # Make a complex chain of operations and optimize it >>> from delayed_image import * # NOQA >>> import kwimage >>> fpath = kwimage.grab_test_image_fpath(overviews=3) >>> dimg = DelayedLoad(fpath, channels='r|g|b').prepare() >>> dimg = dimg.get_overview(1) >>> dimg = dimg.get_overview(1) >>> dimg = dimg.get_overview(1) >>> dopt = dimg.optimize() >>> if 1: >>> import networkx as nx >>> dimg.write_network_text() >>> dopt.write_network_text() >>> print(ub.urepr(dopt.nesting(), nl=-1, sort=0)) >>> final0 = dimg._finalize()[:] >>> final1 = dopt._finalize()[:] >>> assert final0.shape == final1.shape >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(final0, pnum=(1, 2, 1), fnum=1, title='raw') >>> kwplot.imshow(final1, pnum=(1, 2, 2), fnum=1, title='optimized')
- Parameters
subdata (DelayedArray) – data to operate on
overview (int) – the overview to use (assuming it exists)
- property num_overviews¶
Returns: int
- _opt_overview_as_warp()[source]¶
Sometimes it is beneficial to replace an overview with a warp as an intermediate optimization step.
- _opt_crop_after_overview()[source]¶
Given an outer overview and an inner crop, switch places. We want the overview to be as close to the load as possible.
Example
>>> # xdoctest: +REQUIRES(module:osgeo) >>> from delayed_image import * # NOQA >>> fpath = kwimage.grab_test_image_fpath(overviews=3) >>> node0 = DelayedLoad(fpath, channels='r|g|b').prepare() >>> node1 = node0[100:400, 120:450] >>> node2 = node1.get_overview(2) >>> self = node2 >>> new_outer = node2.optimize() >>> print(ub.urepr(node2.nesting(), nl=-1, sort=0)) >>> print(ub.urepr(new_outer.nesting(), nl=-1, sort=0)) >>> final0 = self._finalize() >>> final1 = new_outer._finalize() >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(final0, pnum=(1, 2, 1), fnum=1, title='raw') >>> kwplot.imshow(final1, pnum=(1, 2, 2), fnum=1, title='optimized')
Example
>>> # xdoctest: +REQUIRES(module:osgeo) >>> from delayed_image import * # NOQA >>> fpath = kwimage.grab_test_image_fpath(overviews=3) >>> node0 = DelayedLoad(fpath, channels='r|g|b').prepare() >>> node1 = node0[:, :, 0:2] >>> node2 = node1.get_overview(2) >>> self = node2 >>> new_outer = node2.optimize() >>> node2.write_network_text() >>> new_outer.write_network_text() >>> assert node2.shape[2] == 2 >>> assert new_outer.shape[2] == 2
- _opt_warp_after_overview()[source]¶
Given an warp followed by an overview, move the warp to the outer scope such that the overview is first.
Example
>>> # xdoctest: +REQUIRES(module:osgeo) >>> from delayed_image import * # NOQA >>> fpath = kwimage.grab_test_image_fpath(overviews=3) >>> node0 = DelayedLoad(fpath, channels='r|g|b').prepare() >>> node1 = node0.warp({'scale': (2.1, .7), 'offset': (20, 40)}) >>> node2 = node1.get_overview(2) >>> self = node2 >>> new_outer = node2.optimize() >>> print(ub.urepr(node2.nesting(), nl=-1, sort=0)) >>> print(ub.urepr(new_outer.nesting(), nl=-1, sort=0)) >>> final0 = self._finalize() >>> final1 = new_outer._finalize() >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(final0, pnum=(1, 2, 1), fnum=1, title='raw') >>> kwplot.imshow(final1, pnum=(1, 2, 2), fnum=1, title='optimized')
- class kwcoco.util.delayed_ops.DelayedStack(parts, axis)[source]¶
Bases:
DelayedNaryOperation
Stacks multiple arrays together.
- Parameters
parts (List[DelayedArray]) – data to stack
axis (int) – axes to stack on
- property shape¶
Returns: None | Tuple[int | None, …]
- class kwcoco.util.delayed_ops.DelayedUnaryOperation(subdata)[source]¶
Bases:
DelayedOperation
For operations that have a single input array
- class kwcoco.util.delayed_ops.DelayedWarp(subdata, transform, dsize='auto', antialias=True, interpolation='linear', border_value='auto', noop_eps=0)[source]¶
Bases:
DelayedImage
Applies an affine transform to an image.
Example
>>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image import DelayedLoad >>> self = DelayedLoad.demo(dsize=(16, 16)).prepare() >>> warp1 = self.warp({'scale': 3}) >>> warp2 = warp1.warp({'theta': 0.1}) >>> warp3 = warp2._opt_fuse_warps() >>> warp3._validate() >>> print(ub.urepr(warp2.nesting(), nl=-1, sort=0)) >>> print(ub.urepr(warp3.nesting(), nl=-1, sort=0))
- Parameters
subdata (DelayedArray) – data to operate on
transform (ndarray | dict | kwimage.Affine) – a coercable affine matrix. See
kwimage.Affine
for details on what can be coerced.dsize (Tuple[int, int] | str) – The width / height of the output canvas. If ‘auto’, dsize is computed such that the positive coordinates of the warped image will fit in the new canvas. In this case, any pixel that maps to a negative coordinate will be clipped. This has the property that the input transformation is not modified.
antialias (bool) – if True determines if the transform is downsampling and applies antialiasing via gaussian a blur. Defaults to False
interpolation (str) – interpolation code or cv2 integer. Interpolation codes are linear, nearest, cubic, lancsoz, and area. Defaults to “linear”.
noop_eps (float) – This is the tolerance for optimizing a warp away. If the transform has all of its decomposed parameters (i.e. scale, rotation, translation, shear) less than this value, the warp node can be optimized away. Defaults to 0.
- property transform¶
Returns: kwimage.Affine
- optimize()[source]¶
- Returns
DelayedImage
Example
>>> # Demo optimization that removes a noop warp >>> from delayed_image import DelayedLoad >>> import kwimage >>> base = DelayedLoad.demo(channels='r|g|b').prepare() >>> self = base.warp(kwimage.Affine.eye()) >>> new = self.optimize() >>> assert len(self.as_graph().nodes) == 2 >>> assert len(new.as_graph().nodes) == 1
Example
>>> # Test optimize nans >>> from delayed_image import DelayedNans >>> import kwimage >>> base = DelayedNans(dsize=(100, 100), channels='a|b|c') >>> self = base.warp(kwimage.Affine.scale(0.1)) >>> # Should simply return a new nan generator >>> new = self.optimize() >>> assert len(new.as_graph().nodes) == 1
Example
>>> # Test optimize nans >>> from delayed_image import DelayedLoad >>> import kwimage >>> base = DelayedLoad.demo(channels='r|g|b').prepare() >>> transform = kwimage.Affine.scale(1.0 + 1e-7) >>> self = base.warp(transform, dsize=base.dsize) >>> # An optimize will not remove a warp if there is any >>> # doubt if it is the identity. >>> new = self.optimize() >>> assert len(self.as_graph().nodes) == 2 >>> assert len(new.as_graph().nodes) == 2 >>> # But we can specify a threshold where it will >>> self._set_nested_params(noop_eps=1e-6) >>> new = self.optimize() >>> assert len(self.as_graph().nodes) == 2 >>> assert len(new.as_graph().nodes) == 1
- _opt_absorb_overview()[source]¶
Remove the overview if we can get a higher resolution without it
Given this warp node, if it has a scale component could undo an overview (i.e. the scale factor is greater than 2), we want to:
determine if there is an overview deeper in the tree.
remove that overview and that scale factor from this warp
modify any intermediate nodes that will be changed by having the deeper overview removed.
Example
>>> # xdoctest: +REQUIRES(module:osgeo) >>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image import DelayedLoad >>> import kwimage >>> fpath = kwimage.grab_test_image_fpath(overviews=3) >>> base = DelayedLoad(fpath, channels='r|g|b').prepare() >>> # Case without any operations between the overview and warp >>> self = base.get_overview(1).warp({'scale': 4}) >>> self.write_network_text() >>> opt = self._opt_absorb_overview()._validate() >>> opt.write_network_text() >>> opt_data = [d for n, d in opt.as_graph().nodes(data=True)] >>> assert 'DelayedOverview' not in [d['type'] for d in opt_data] >>> # Case with a chain of operations between overview and warp >>> self = base.get_overview(1)[0:101, 0:100].warp({'scale': 4}) >>> self.write_network_text() >>> opt = self._opt_absorb_overview()._validate() >>> opt.write_network_text() >>> opt_data = [d for n, d in opt.as_graph().nodes(data=True)] >>> #assert opt_data[1]['meta']['space_slice'] == (slice(0, 202, None), slice(0, 200, None)) >>> assert opt_data[1]['meta']['space_slice'] == (slice(0, 204, None), slice(0, 202, None)) >>> # Any sort of complex chain does prevents this optimization >>> # from running. >>> self = base.get_overview(1)[0:101, 0:100][0:50, 0:50].warp({'scale': 4}) >>> opt = self._opt_absorb_overview()._validate() >>> opt.write_network_text() >>> opt_data = [d for n, d in opt.as_graph().nodes(data=True)] >>> assert 'DelayedOverview' in [d['type'] for d in opt_data]
- _opt_split_warp_overview()[source]¶
Split this node into a warp and an overview if possible
Example
>>> # xdoctest: +REQUIRES(module:osgeo) >>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image import DelayedLoad >>> import kwimage >>> fpath = kwimage.grab_test_image_fpath(overviews=3) >>> self = DelayedLoad(fpath, channels='r|g|b').prepare() >>> print(f'self={self}') >>> print('self.meta = {}'.format(ub.urepr(self.meta, nl=1))) >>> warp0 = self.warp({'scale': 0.2}) >>> warp1 = warp0._opt_split_warp_overview() >>> warp2 = self.warp({'scale': 0.25})._opt_split_warp_overview() >>> print(ub.urepr(warp0.nesting(), nl=-1, sort=0)) >>> print(ub.urepr(warp1.nesting(), nl=-1, sort=0)) >>> print(ub.urepr(warp2.nesting(), nl=-1, sort=0)) >>> warp0_nodes = [d['type'] for d in warp0.as_graph().nodes.values()] >>> warp1_nodes = [d['type'] for d in warp1.as_graph().nodes.values()] >>> warp2_nodes = [d['type'] for d in warp2.as_graph().nodes.values()] >>> assert warp0_nodes == ['DelayedWarp', 'DelayedLoad'] >>> assert warp1_nodes == ['DelayedWarp', 'DelayedOverview', 'DelayedLoad'] >>> assert warp2_nodes == ['DelayedOverview', 'DelayedLoad']
Example
>>> # xdoctest: +REQUIRES(module:osgeo) >>> from delayed_image.delayed_nodes import * # NOQA >>> from delayed_image import DelayedLoad >>> import kwimage >>> fpath = kwimage.grab_test_image_fpath(overviews=3) >>> self = DelayedLoad(fpath, channels='r|g|b').prepare() >>> warp0 = self.warp({'scale': 1 / 2 ** 6}) >>> opt = warp0.optimize() >>> print(ub.urepr(warp0.nesting(), nl=-1, sort=0)) >>> print(ub.urepr(opt.nesting(), nl=-1, sort=0)) >>> warp0_nodes = [d['type'] for d in warp0.as_graph().nodes.values()] >>> opt_nodes = [d['type'] for d in opt.as_graph().nodes.values()] >>> assert warp0_nodes == ['DelayedWarp', 'DelayedLoad'] >>> assert opt_nodes == ['DelayedWarp', 'DelayedOverview', 'DelayedLoad']
- class kwcoco.util.delayed_ops.ImageOpsMixin[source]¶
Bases:
object
- crop(space_slice=None, chan_idxs=None, clip=True, wrap=True, pad=0)[source]¶
Crops an image along integer pixel coordinates.
- Parameters
space_slice (Tuple[slice, slice]) – y-slice and x-slice.
chan_idxs (List[int]) – indexes of bands to take
clip (bool) – if True, the slice is interpreted normally, where it won’t go past the image extent, otherwise slicing into negative regions or past the image bounds will result in padding. Defaults to True.
wrap (bool) – if True, negative indexes “wrap around”, otherwise they are treated as is. Defaults to True.
pad (int | List[Tuple[int, int]]) – if specified, applies extra padding
- Returns
DelayedImage
Example
>>> from delayed_image import DelayedLoad >>> import kwimage >>> self = DelayedLoad.demo().prepare() >>> self = self.dequantize({'quant_max': 255}) >>> self = self.warp({'scale': 1 / 2}) >>> pad = 0 >>> h, w = space_dims = self.dsize[::-1] >>> grid = list(ub.named_product({ >>> 'left': [0, -64], 'right': [0, 64], >>> 'top': [0, -64], 'bot': [0, 64],})) >>> grid += [ >>> {'left': 64, 'right': -64, 'top': 0, 'bot': 0}, >>> {'left': 64, 'right': 64, 'top': 0, 'bot': 0}, >>> {'left': 0, 'right': 0, 'top': 64, 'bot': -64}, >>> {'left': 64, 'right': -64, 'top': 64, 'bot': -64}, >>> ] >>> crops = [] >>> for pads in grid: >>> space_slice = (slice(pads['top'], h + pads['bot']), >>> slice(pads['left'], w + pads['right'])) >>> delayed = self.crop(space_slice) >>> crop = delayed.finalize() >>> yyxx = kwimage.Boxes.from_slice(space_slice, wrap=False, clip=0).toformat('_yyxx').data[0] >>> title = '[{}:{}, {}:{}]'.format(*yyxx) >>> crop_canvas = kwimage.draw_header_text(crop, title, fit=True, bg_color='kw_darkgray') >>> crops.append(crop_canvas) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> canvas = kwimage.stack_images_grid(crops, pad=16, bg_value='kw_darkgreen') >>> canvas = kwimage.fill_nans_with_checkers(canvas) >>> kwplot.imshow(canvas, title='Normal Slicing: Cropped Images With Wrap+Clipped Slices', doclf=1, fnum=1) >>> kwplot.show_if_requested()
Example
>>> # Demo the case with pads / no-clips / no-wraps >>> from delayed_image import DelayedLoad >>> import kwimage >>> self = DelayedLoad.demo().prepare() >>> self = self.dequantize({'quant_max': 255}) >>> self = self.warp({'scale': 1 / 2}) >>> pad = [(64, 128), (32, 96)] >>> pad = [(0, 20), (0, 0)] >>> pad = 0 >>> pad = 8 >>> h, w = space_dims = self.dsize[::-1] >>> grid = list(ub.named_product({ >>> 'left': [0, -64], 'right': [0, 64], >>> 'top': [0, -64], 'bot': [0, 64],})) >>> grid += [ >>> {'left': 64, 'right': -64, 'top': 0, 'bot': 0}, >>> {'left': 64, 'right': 64, 'top': 0, 'bot': 0}, >>> {'left': 0, 'right': 0, 'top': 64, 'bot': -64}, >>> {'left': 64, 'right': -64, 'top': 64, 'bot': -64}, >>> ] >>> crops = [] >>> for pads in grid: >>> space_slice = (slice(pads['top'], h + pads['bot']), >>> slice(pads['left'], w + pads['right'])) >>> delayed = self._padded_crop(space_slice, pad=pad) >>> crop = delayed.finalize(optimize=1) >>> yyxx = kwimage.Boxes.from_slice(space_slice, wrap=False, clip=0).toformat('_yyxx').data[0] >>> title = '[{}:{}, {}:{}]'.format(*yyxx) >>> if pad: >>> title += f'{chr(10)}pad={pad}' >>> crop_canvas = kwimage.draw_header_text(crop, title, fit=True, bg_color='kw_darkgray') >>> crops.append(crop_canvas) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> canvas = kwimage.stack_images_grid(crops, pad=16, bg_value='kw_darkgreen', resize='smaller') >>> canvas = kwimage.fill_nans_with_checkers(canvas) >>> kwplot.imshow(canvas, title='Negative Slicing: Cropped Images With clip=False wrap=False', doclf=1, fnum=2) >>> kwplot.show_if_requested()
- _padded_crop(space_slice, pad=0)[source]¶
Does the type of padded crop we want, but inefficiently using a warp. Reimplementing would be good, but this is good enough for now.
- warp(transform, dsize='auto', **warp_kwargs)[source]¶
Applys an affine transformation to the image. See
DelayedWarp
.- Parameters
transform (ndarray | dict | kwimage.Affine) – a coercable affine matrix. See
kwimage.Affine
for details on what can be coerced.dsize (Tuple[int, int] | str) – The width / height of the output canvas. If ‘auto’, dsize is computed such that the positive coordinates of the warped image will fit in the new canvas. In this case, any pixel that maps to a negative coordinate will be clipped. This has the property that the input transformation is not modified.
antialias (bool) – if True determines if the transform is downsampling and applies antialiasing via gaussian a blur. Defaults to False
interpolation (str) – interpolation code or cv2 integer. Interpolation codes are linear, nearest, cubic, lancsoz, and area. Defaults to “linear”.
border_value (int | float | str) – if auto will be nan for float and 0 for int.
noop_eps (float) – This is the tolerance for optimizing a warp away. If the transform has all of its decomposed parameters (i.e. scale, rotation, translation, shear) less than this value, the warp node can be optimized away. Defaults to 0.
- Returns
DelayedImage
- dequantize(quantization)[source]¶
Rescales image intensities from int to floats.
- Parameters
quantization (Dict[str, Any]) – quantization information dictionary to undo. see
delayed_image.helpers.dequantize()
Expected keys are: orig_dtype (str) orig_min (float) orig_max (float) quant_min (float) quant_max (float) nodata (None | int)- Returns
DelayedDequantize
Example
>>> from delayed_image.delayed_leafs import DelayedLoad >>> self = DelayedLoad.demo().prepare() >>> quantization = { >>> 'orig_dtype': 'float32', >>> 'orig_min': 0, >>> 'orig_max': 1, >>> 'quant_min': 0, >>> 'quant_max': 255, >>> 'nodata': None, >>> } >>> new = self.dequantize(quantization) >>> assert self.finalize().max() > 1 >>> assert new.finalize().max() <= 1
- get_overview(overview)[source]¶
Downsamples an image by a factor of two.
- Parameters
overview (int) – the overview to use (assuming it exists)
- Returns
DelayedOverview
- get_transform_from(src)[source]¶
Find a transform from a given node (src) to this node (self / dst).
Given two delayed images src and dst that share a common leaf, find the transform from src to dst.
- Parameters
src (DelayedOperation) – the other view to get a transform to. This must share a leaf with self (which is the dst).
- Returns
The transform that warps the space of src to the space of self.
- Return type
Example
>>> from delayed_image import * # NOQA >>> from delayed_image.delayed_leafs import DelayedLoad >>> base = DelayedLoad.demo().prepare() >>> src = base.scale(2) >>> dst = src.warp({'scale': 4, 'offset': (3, 5)}) >>> transform = dst.get_transform_from(src) >>> tf = transform.decompose() >>> assert tf['scale'] == (4, 4) >>> assert tf['offset'] == (3, 5)
Example
>>> from delayed_image import demo >>> self = demo.non_aligned_leafs() >>> leaf = list(self._leaf_paths())[0][0] >>> tf1 = self.get_transform_from(leaf) >>> tf2 = leaf.get_transform_from(self) >>> np.allclose(np.linalg.inv(tf2), tf1)
Submodules¶
- class kwcoco.util.dict_like.DictLike[source]¶
Bases:
NiceRepr
- An inherited class must specify the
getitem
,setitem
, and keys
methods.
A class is dictionary like if it has:
__iter__
,__len__
,__contains__
,__getitem__
,items
,keys
,values
,get
,and if it should be writable it should have:
__delitem__
,__setitem__
,update
,And perhaps:
copy
,__iter__
,__len__
,__contains__
,__getitem__
,items
,keys
,values
,get
,and if it should be writable it should have:
__delitem__
,__setitem__
,update
,And perhaps:
copy
,- asdict()¶
- Return type
Dict
- An inherited class must specify the
- class kwcoco.util.dict_proxy2.DictInterface[source]¶
Bases:
object
- An inherited class must specify the
getitem
,setitem
, and keys
methods.
A class is dictionary like if it has:
__iter__
,__len__
,__contains__
,__getitem__
,items
,keys
,values
,get
,and if it should be writable it should have:
__delitem__
,__setitem__
,update
,And perhaps:
copy
,__iter__
,__len__
,__contains__
,__getitem__
,items
,keys
,values
,get
,and if it should be writable it should have:
__delitem__
,__setitem__
,update
,And perhaps:
copy
,Example
from scriptconfig.dict_like import DictLike class DuckDict(DictLike):
- def __init__(self, _data=None):
- if _data is None:
_data = {}
self._data = _data
- def getitem(self, key):
return self._data[key]
- def keys(self):
return self._data.keys()
self = DuckDict({1: 2, 3: 4}) print(f’self._data={self._data}’) cast = dict(self) print(f’cast={cast}’) print(f’self={self}’)
- An inherited class must specify the
- class kwcoco.util.dict_proxy2.DictProxy2[source]¶
Bases:
DictInterface
Allows an object to proxy the behavior of a _proxy dict attribute
- class kwcoco.util.dict_proxy2._AliasMetaclass(name, bases, namespace, *args, **kwargs)[source]¶
Bases:
type
Populates the __alias_to_aliases__ field at class definition time to reduce the overhead of instance creation.
- class kwcoco.util.dict_proxy2.AliasedDictProxy[source]¶
Bases:
DictProxy2
Can have a class attribute called ``__alias_to_primary__ `` which is a Dict[str, str] mapping alias-keys to primary-keys.
Need to handle cases:
- image dictionary contains no primary / aliased keys
primary keys used
- image dictionary only has aliased keys
aliased keys are updated
- image dictionary only has primary keys
primary keys are updated
- image dictionary only both primary and aliased keys
both keys are updated
Example
>>> from kwcoco.util.dict_proxy2 import * # NOQA >>> class MyAliasedObject(AliasedDictProxy): >>> __alias_to_primary__ = { >>> 'foo_alias1': 'foo_primary', >>> 'foo_alias2': 'foo_primary', >>> 'bar_alias1': 'bar_primary', >>> } >>> def __init__(self, obj): >>> self._proxy = obj >>> def __repr__(self): >>> return repr(self._proxy) >>> def __str__(self): >>> return str(self._proxy) >>> # Test starting from empty >>> obj = MyAliasedObject({}) >>> obj['regular_key'] = 'val0' >>> assert 'foo_primary' not in obj >>> assert 'foo_alias1' not in obj >>> assert 'foo_alias2' not in obj >>> obj['foo_primary'] = 'val1' >>> assert 'foo_primary' in obj >>> assert 'foo_alias1' in obj >>> assert 'foo_alias2' in obj >>> obj['foo_alias1'] = 'val2' >>> obj['foo_alias2'] = 'val3' >>> obj['bar_alias1'] = 'val4' >>> obj['bar_primary'] = 'val5' >>> assert obj._proxy == { >>> 'regular_key': 'val0', >>> 'foo_primary': 'val3', >>> 'bar_primary': 'val5'} >>> # Test starting with primary keys >>> obj = MyAliasedObject({ >>> 'foo_primary': 123, >>> 'bar_primary': 123, >>> }) >>> assert 'foo_alias1' in obj >>> assert 'bar_alias1' in obj >>> obj['bar_alias1'] = 456 >>> obj['foo_primary'] = 789 >>> assert obj._proxy == { >>> 'foo_primary': 789, >>> 'bar_primary': 456} >>> # Test that if aliases keys are existant we dont add primary keys >>> obj = MyAliasedObject({ >>> 'foo_alias1': 123, >>> }) >>> assert 'foo_alias1' in obj >>> assert 'foo_primary' in obj >>> obj['foo_alias1'] = 456 >>> obj['foo_primary'] = 789 >>> assert obj._proxy == { >>> 'foo_alias1': 789, >>> } >>> # Test that if primary and aliases keys exist, we update both >>> obj = MyAliasedObject({ >>> 'foo_primary': 3, >>> 'foo_alias2': 5, >>> }) >>> # We do not attempt to detect conflicts >>> assert obj['foo_primary'] == 3 >>> assert obj['foo_alias1'] == 3 >>> assert obj['foo_alias2'] == 5 >>> obj['foo_alias1'] = 23 >>> assert obj['foo_primary'] == 23 >>> assert obj['foo_alias1'] == 23 >>> assert obj['foo_alias2'] == 23 >>> obj['foo_primary'] = -12 >>> assert obj['foo_primary'] == -12 >>> assert obj['foo_alias1'] == -12 >>> assert obj['foo_alias2'] == -12 >>> assert obj._proxy == { >>> 'foo_primary': -12, >>> 'foo_alias2': -12}
Functional interface into defining jsonschema structures.
See mixin classes for details.
Perhaps [Voluptuous] does this better and we should switch to that?
References
Example
>>> from kwcoco.util.jsonschema_elements import * # NOQA
>>> elem = SchemaElements()
>>> for base in SchemaElements.__bases__:
>>> print('\n\n====\nbase = {!r}'.format(base))
>>> attrs = [key for key in dir(base) if not key.startswith('_')]
>>> for key in attrs:
>>> value = getattr(elem, key)
>>> print('{} = {}'.format(key, value))
- class kwcoco.util.jsonschema_elements.Element(base, options={}, _magic=None)[source]¶
Bases:
dict
A dictionary used to define an element of a JSON Schema.
The exact keys/values for the element will depend on the type of element being described. The
SchemaElements
defines exactly what these are for the core elements. (e.g. OBJECT, INTEGER, NULL, ARRAY, ANYOF)Example
>>> from kwcoco.coco_schema import * # NOQA >>> self = Element(base={'type': 'demo'}, options={'opt1', 'opt2'}) >>> new = self(opt1=3) >>> print('self = {}'.format(ub.urepr(self, nl=1, sort=1))) >>> print('new = {}'.format(ub.urepr(new, nl=1, sort=1))) >>> print('new2 = {}'.format(ub.urepr(new(), nl=1, sort=1))) >>> print('new3 = {}'.format(ub.urepr(new(title='myvar'), nl=1, sort=1))) >>> print('new4 = {}'.format(ub.urepr(new(title='myvar')(examples=['']), nl=1, sort=1))) >>> print('new5 = {}'.format(ub.urepr(new(badattr=True), nl=1, sort=1))) self = { 'type': 'demo', } new = { 'opt1': 3, 'type': 'demo', } new2 = { 'opt1': 3, 'type': 'demo', } new3 = { 'opt1': 3, 'title': 'myvar', 'type': 'demo', } new4 = { 'examples': [''], 'opt1': 3, 'title': 'myvar', 'type': 'demo', } new5 = { 'opt1': 3, 'type': 'demo', }
- Parameters
base (dict) – the keys / values this schema must contain
options (dict) – the keys / values this schema may contain
_magic (callable | None) – called when creating an instance of this schema element. Allows convinience attributes to be converted to the formal jsonschema specs. TODO: _magic is a terrible name, we need to rename it with something descriptive.
- class kwcoco.util.jsonschema_elements.ScalarElements[source]¶
Bases:
object
Single-valued elements
- property NULL¶
//json-schema.org/understanding-json-schema/reference/null.html
- Type
https
- property BOOLEAN¶
//json-schema.org/understanding-json-schema/reference/null.html
- Type
https
- property STRING¶
//json-schema.org/understanding-json-schema/reference/string.html
- Type
https
- property NUMBER¶
//json-schema.org/understanding-json-schema/reference/numeric.html#number
- Type
https
- property INTEGER¶
//json-schema.org/understanding-json-schema/reference/numeric.html#integer
- Type
https
- class kwcoco.util.jsonschema_elements.QuantifierElements[source]¶
Bases:
object
Quantifier types
https://json-schema.org/understanding-json-schema/reference/combining.html#allof
Example
>>> from kwcoco.util.jsonschema_elements import * # NOQA >>> elem.ANYOF(elem.STRING, elem.NUMBER).validate() >>> elem.ONEOF(elem.STRING, elem.NUMBER).validate() >>> elem.NOT(elem.NULL).validate() >>> elem.NOT(elem.ANY).validate() >>> elem.ANY.validate()
- property ANY¶
- class kwcoco.util.jsonschema_elements.ContainerElements[source]¶
Bases:
object
Types that contain other types
Example
>>> from kwcoco.util.jsonschema_elements import * # NOQA >>> print(elem.ARRAY().validate()) >>> print(elem.OBJECT().validate()) >>> print(elem.OBJECT().validate()) {'type': 'array', 'items': {}} {'type': 'object', 'properties': {}} {'type': 'object', 'properties': {}}
- ARRAY(TYPE={}, **kw)[source]¶
https://json-schema.org/understanding-json-schema/reference/array.html
Example
>>> from kwcoco.util.jsonschema_elements import * # NOQA >>> ARRAY(numItems=3) >>> schema = ARRAY(minItems=3) >>> schema.validate() {'type': 'array', 'items': {}, 'minItems': 3}
- OBJECT(PROPERTIES={}, **kw)[source]¶
https://json-schema.org/understanding-json-schema/reference/object.html
Example
>>> import jsonschema >>> schema = elem.OBJECT() >>> jsonschema.validate({}, schema) >>> # >>> import jsonschema >>> schema = elem.OBJECT({ >>> 'key1': elem.ANY(), >>> 'key2': elem.ANY(), >>> }, required=['key1']) >>> jsonschema.validate({'key1': None}, schema) >>> # >>> import jsonschema >>> schema = elem.OBJECT({ >>> 'key1': elem.OBJECT({'arr': elem.ARRAY()}), >>> 'key2': elem.ANY(), >>> }, required=['key1'], title='a title') >>> schema.validate() >>> print('schema = {}'.format(ub.urepr(schema, sort=1, nl=-1))) >>> jsonschema.validate({'key1': {'arr': []}}, schema) schema = { 'properties': { 'key1': { 'properties': { 'arr': {'items': {}, 'type': 'array'} }, 'type': 'object' }, 'key2': {} }, 'required': ['key1'], 'title': 'a title', 'type': 'object' }
- class kwcoco.util.jsonschema_elements.SchemaElements[source]¶
Bases:
ScalarElements
,QuantifierElements
,ContainerElements
Functional interface into defining jsonschema structures.
See mixin classes for details.
References
https://json-schema.org/understanding-json-schema/
Todo
[ ] Generics: title, description, default, examples
CommandLine
xdoctest -m /home/joncrall/code/kwcoco/kwcoco/util/jsonschema_elements.py SchemaElements
Example
>>> from kwcoco.util.jsonschema_elements import * # NOQA >>> elem = SchemaElements() >>> elem.ARRAY(elem.ANY()) >>> schema = OBJECT({ >>> 'prop1': ARRAY(INTEGER, minItems=3), >>> 'prop2': ARRAY(STRING, numItems=2), >>> 'prop3': ARRAY(OBJECT({ >>> 'subprob1': NUMBER, >>> 'subprob2': NUMBER, >>> })) >>> }) >>> print('schema = {}'.format(ub.urepr(schema, nl=2, sort=1))) schema = { 'properties': { 'prop1': {'items': {'type': 'integer'}, 'minItems': 3, 'type': 'array'}, 'prop2': {'items': {'type': 'string'}, 'maxItems': 2, 'minItems': 2, 'type': 'array'}, 'prop3': {'items': {'properties': {'subprob1': {'type': 'number'}, 'subprob2': {'type': 'number'}}, 'type': 'object'}, 'type': 'array'}, }, 'type': 'object', }
>>> TYPE = elem.OBJECT({ >>> 'p1': ANY, >>> 'p2': ANY, >>> }, required=['p1']) >>> import jsonschema >>> inst = {'p1': None} >>> jsonschema.validate(inst, schema=TYPE) >>> #jsonschema.validate({'p2': None}, schema=TYPE)
- kwcoco.util.jsonschema_elements.ALLOF(*TYPES)¶
- kwcoco.util.jsonschema_elements.ANYOF(*TYPES)¶
- kwcoco.util.jsonschema_elements.ARRAY(TYPE={}, **kw)¶
https://json-schema.org/understanding-json-schema/reference/array.html
Example
>>> from kwcoco.util.jsonschema_elements import * # NOQA >>> ARRAY(numItems=3) >>> schema = ARRAY(minItems=3) >>> schema.validate() {'type': 'array', 'items': {}, 'minItems': 3}
- kwcoco.util.jsonschema_elements.NOT(TYPE)¶
- kwcoco.util.jsonschema_elements.OBJECT(PROPERTIES={}, **kw)¶
https://json-schema.org/understanding-json-schema/reference/object.html
Example
>>> import jsonschema >>> schema = elem.OBJECT() >>> jsonschema.validate({}, schema) >>> # >>> import jsonschema >>> schema = elem.OBJECT({ >>> 'key1': elem.ANY(), >>> 'key2': elem.ANY(), >>> }, required=['key1']) >>> jsonschema.validate({'key1': None}, schema) >>> # >>> import jsonschema >>> schema = elem.OBJECT({ >>> 'key1': elem.OBJECT({'arr': elem.ARRAY()}), >>> 'key2': elem.ANY(), >>> }, required=['key1'], title='a title') >>> schema.validate() >>> print('schema = {}'.format(ub.urepr(schema, sort=1, nl=-1))) >>> jsonschema.validate({'key1': {'arr': []}}, schema) schema = { 'properties': { 'key1': { 'properties': { 'arr': {'items': {}, 'type': 'array'} }, 'type': 'object' }, 'key2': {} }, 'required': ['key1'], 'title': 'a title', 'type': 'object' }
- kwcoco.util.jsonschema_elements.ONEOF(*TYPES)¶
Ported to delayed_image
- class kwcoco.util.util_archive.Archive(fpath=None, mode='r', backend=None, file=None)[source]¶
Bases:
object
Abstraction over zipfile and tarfile
Todo
see if we can use one of these other tools instead
Example
>>> from kwcoco.util.util_archive import Archive >>> import ubelt as ub >>> dpath = ub.Path.appdir('kwcoco', 'tests', 'util', 'archive') >>> dpath.delete().ensuredir() >>> # Test write mode >>> mode = 'w' >>> arc_zip = Archive(str(dpath / 'demo.zip'), mode=mode) >>> arc_tar = Archive(str(dpath / 'demo.tar.gz'), mode=mode) >>> open(dpath / 'data_1only.txt', 'w').write('bazbzzz') >>> open(dpath / 'data_2only.txt', 'w').write('buzzz') >>> open(dpath / 'data_both.txt', 'w').write('foobar') >>> # >>> arc_zip.add(dpath / 'data_both.txt') >>> arc_zip.add(dpath / 'data_1only.txt') >>> # >>> arc_tar.add(dpath / 'data_both.txt') >>> arc_tar.add(dpath / 'data_2only.txt') >>> # >>> arc_zip.close() >>> arc_tar.close() >>> # >>> # Test read mode >>> arc_zip = Archive(str(dpath / 'demo.zip'), mode='r') >>> arc_tar = Archive(str(dpath / 'demo.tar.gz'), mode='r') >>> # Test names >>> name = 'data_both.txt' >>> assert name in arc_zip.names() >>> assert name in arc_tar.names() >>> # Test read >>> assert arc_zip.read(name, mode='r') == 'foobar' >>> assert arc_tar.read(name, mode='r') == 'foobar' >>> # >>> # Test extractall >>> extract_dpath = ub.ensuredir(str(dpath / 'extracted')) >>> extracted1 = arc_zip.extractall(extract_dpath) >>> extracted2 = arc_tar.extractall(extract_dpath) >>> for fpath in extracted2: >>> print(open(fpath, 'r').read()) >>> for fpath in extracted1: >>> print(open(fpath, 'r').read())
- Parameters
fpath (str | None) – path to open
mode (str) – either r or w
backend (str | ModuleType | None) – either tarfile, zipfile string or module.
file (tarfile.TarFile | zipfile.ZipFile | None) – the open backend file if it already exists. If not set, than fpath will open it.
- _available_backends = {'tarfile': <module 'tarfile' from '/home/docs/checkouts/readthedocs.org/user_builds/kwcoco/envs/v0.6.4/lib/python3.7/tarfile.py'>, 'zipfile': <module 'zipfile' from '/home/docs/.pyenv/versions/3.7.9/lib/python3.7/zipfile.py'>}¶
- read(name, mode='rb')[source]¶
Read data directly out of the archive.
- Parameters
name (str) – the name of the archive member to read
mode (str) – This is a conceptual parameter that emulates the usual open mode. Defaults to “rb”, which returns data as raw bytes. If “r” will decode the bytes into utf8-text.
Deprecation helpers
Defines a safer eval function
- exception kwcoco.util.util_eval.RestrictedSyntaxError[source]¶
Bases:
Exception
An exception raised by restricted_eval if a disallowed expression is given
- kwcoco.util.util_eval.restricted_eval(expr, max_chars=32, local_dict=None, builtins_passlist=None)[source]¶
A restricted form of Python’s eval that is meant to be slightly safer
- Parameters
expr (str) – the expression to evaluate
max_char (int) – expression cannot be more than this many characters
local_dict (Dict[str, Any]) – a list of variables allowed to be used
builtins_passlist (List[str] | None) – if specified, only allow use of certain builtins
References
https://realpython.com/python-eval-function/#minimizing-the-security-issues-of-eval
Notes
This function may not be safe, but it has as many mitigation measures that I know about. This function should be audited and possibly made even more restricted. The idea is that this should just be used to evaluate numeric expressions.
Example
>>> from kwcoco.util.util_eval import * # NOQA >>> builtins_passlist = ['min', 'max', 'round', 'sum'] >>> local_dict = {} >>> max_chars = 32 >>> expr = 'max(3 + 2, 9)' >>> result = restricted_eval(expr, max_chars, local_dict, builtins_passlist) >>> expr = '3 + 2' >>> result = restricted_eval(expr, max_chars, local_dict, builtins_passlist) >>> expr = '3 + 2' >>> result = restricted_eval(expr, max_chars) >>> import pytest >>> with pytest.raises(RestrictedSyntaxError): >>> expr = 'max(a + 2, 3)' >>> result = restricted_eval(expr, max_chars, dict(a=3))
Deprecated and functionality moved to ubelt
- class kwcoco.util.util_futures.Executor(mode='thread', max_workers=0)[source]¶
Bases:
object
A concrete asynchronous executor with a configurable backend.
The type of parallelism (or lack thereof) is configured via the
mode
parameter, which can be: “process”, “thread”, or “serial”. This allows the user to easily enable / disable parallelism or switch between processes and threads without modifying the surrounding logic.- SeeAlso:
- Variables
backend (SerialExecutor | ThreadPoolExecutor | ProcessPoolExecutor) –
Example
>>> import ubelt as ub >>> # Prototype code using simple serial processing >>> executor = ub.Executor(mode='serial', max_workers=0) >>> jobs = [executor.submit(sum, [i + 1, i]) for i in range(10)] >>> print([job.result() for job in jobs]) [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
>>> # Enable parallelism by only changing one parameter >>> executor = ub.Executor(mode='process', max_workers=0) >>> jobs = [executor.submit(sum, [i + 1, i]) for i in range(10)] >>> print([job.result() for job in jobs]) [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
- Parameters
mode (str) – The backend parallelism mechanism. Can be either thread, serial, or process. Defaults to ‘thread’.
max_workers (int) – number of workers. If 0, serial is forced. Defaults to 0.
- submit(func, *args, **kw)[source]¶
Calls the submit function of the underlying backend.
- Returns
a future representing the job
- Return type
- map(fn, *iterables, **kwargs)[source]¶
Calls the map function of the underlying backend.
CommandLine
xdoctest -m ubelt.util_futures Executor.map
Example
>>> import ubelt as ub >>> import concurrent.futures >>> import string >>> with ub.Executor(mode='serial') as executor: ... result_iter = executor.map(int, string.digits) ... results = list(result_iter) >>> print('results = {!r}'.format(results)) results = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> with ub.Executor(mode='thread', max_workers=2) as executor: ... result_iter = executor.map(int, string.digits) ... results = list(result_iter) >>> # xdoctest: +IGNORE_WANT >>> print('results = {!r}'.format(results)) results = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
- class kwcoco.util.util_futures.JobPool(mode='thread', max_workers=0, transient=False)[source]¶
Bases:
object
Abstracts away boilerplate of submitting and collecting jobs
This is a basic wrapper around
ubelt.util_futures.Executor
that simplifies the most basic case by 1. keeping track of references to submitted futures for you and 2. providing an as_completed method to consume those futures as they are ready.- Variables
executor (Executor) – internal executor object
jobs (List[Future]) – internal job list. Note: do not rely on this attribute, it may change in the future.
Example
>>> import ubelt as ub >>> def worker(data): >>> return data + 1 >>> pool = ub.JobPool('thread', max_workers=16) >>> for data in ub.ProgIter(range(10), desc='submit jobs'): >>> pool.submit(worker, data) >>> final = [] >>> for job in pool.as_completed(desc='collect jobs'): >>> info = job.result() >>> final.append(info) >>> print('final = {!r}'.format(final))
- Parameters
mode (str) – The backend parallelism mechanism. Can be either thread, serial, or process. Defaults to ‘thread’.
max_workers (int) – number of workers. If 0, serial is forced. Defaults to 0.
transient (bool) – if True, references to jobs will be discarded as they are returned by
as_completed()
. Otherwise thejobs
attribute holds a reference to all jobs ever submitted. Default to False.
- submit(func, *args, **kwargs)[source]¶
Submit a job managed by the pool
- Parameters
func (Callable[…, Any]) – A callable that will take as many arguments as there are passed iterables.
*args – positional arguments to pass to the function
*kwargs – keyword arguments to pass to the function
- Returns
a future representing the job
- Return type
- as_completed(timeout=None, desc=None, progkw=None)[source]¶
Generates completed jobs in an arbitrary order
- Parameters
timeout (float | None) – Specify the the maximum number of seconds to wait for a job. Note: this is ignored in serial mode.
desc (str | None) – if specified, reports progress with a
ubelt.progiter.ProgIter
object.progkw (dict | None) – extra keyword arguments to
ubelt.progiter.ProgIter
.
- Yields
concurrent.futures.Future – The completed future object containing the results of a job.
CommandLine
xdoctest -m ubelt.util_futures JobPool.as_completed
Example
>>> import ubelt as ub >>> pool = ub.JobPool('thread', max_workers=8) >>> text = ub.paragraph( ... ''' ... UDP is a cool protocol, check out the wiki: ... ... UDP-based Data Transfer Protocol (UDT), is a high-performance ... data transfer protocol designed for transferring large ... volumetric datasets over high-speed wide area networks. Such ... settings are typically disadvantageous for the more common TCP ... protocol. ... ''') >>> for word in text.split(' '): ... pool.submit(print, word) >>> for _ in pool.as_completed(): ... pass >>> pool.shutdown()
- join(**kwargs)[source]¶
Like
JobPool.as_completed()
, but executes the result method of each future and returns only after all processes are complete. This allows for lower-boilerplate prototyping.- Parameters
**kwargs – passed to
JobPool.as_completed()
- Returns
list of results
- Return type
List[Any]
Example
>>> import ubelt as ub >>> # We just want to try replacing our simple iterative algorithm >>> # with the embarrassingly parallel version >>> arglist = list(zip(range(1000), range(1000))) >>> func = ub.identity >>> # >>> # Original version >>> for args in arglist: >>> func(*args) >>> # >>> # Potentially parallel version >>> jobs = ub.JobPool(max_workers=0) >>> for args in arglist: >>> jobs.submit(func, *args) >>> _ = jobs.join(desc='running')
- kwcoco.util.util_json.ensure_json_serializable(dict_, normalize_containers=False, verbose=0)[source]¶
Attempt to convert common types (e.g. numpy) into something json complient
Convert numpy and tuples into lists
- Parameters
normalize_containers (bool) – if True, normalizes dict containers to be standard python structures. Defaults to False.
Example
>>> data = ub.ddict(lambda: int) >>> data['foo'] = ub.ddict(lambda: int) >>> data['bar'] = np.array([1, 2, 3]) >>> data['foo']['a'] = 1 >>> data['foo']['b'] = (1, np.array([1, 2, 3]), {3: np.int32(3), 4: np.float16(1.0)}) >>> dict_ = data >>> print(ub.urepr(data, nl=-1)) >>> assert list(find_json_unserializable(data)) >>> result = ensure_json_serializable(data, normalize_containers=True) >>> print(ub.urepr(result, nl=-1)) >>> assert not list(find_json_unserializable(result)) >>> assert type(result) is dict
- kwcoco.util.util_json.find_json_unserializable(data, quickcheck=False)[source]¶
Recurse through json datastructure and find any component that causes a serialization error. Record the location of these errors in the datastructure as we recurse through the call tree.
- Parameters
data (object) – data that should be json serializable
quickcheck (bool) – if True, check the entire datastructure assuming its ok before doing the python-based recursive logic.
- Returns
list of “bad part” dictionaries containing items
’value’ - the value that caused the serialization error
’loc’ - which contains a list of key/indexes that can be used to lookup the location of the unserializable value. If the “loc” is a list, then it indicates a rare case where a key in a dictionary is causing the serialization error.
- Return type
List[Dict]
Example
>>> from kwcoco.util.util_json import * # NOQA >>> part = ub.ddict(lambda: int) >>> part['foo'] = ub.ddict(lambda: int) >>> part['bar'] = np.array([1, 2, 3]) >>> part['foo']['a'] = 1 >>> # Create a dictionary with two unserializable parts >>> data = [1, 2, {'nest1': [2, part]}, {frozenset({'badkey'}): 3, 2: 4}] >>> parts = list(find_json_unserializable(data)) >>> print('parts = {}'.format(ub.urepr(parts, nl=1))) >>> # Check expected structure of bad parts >>> assert len(parts) == 2 >>> part = parts[1] >>> assert list(part['loc']) == [2, 'nest1', 1, 'bar'] >>> # We can use the "loc" to find the bad value >>> for part in parts: >>> # "loc" is a list of directions containing which keys/indexes >>> # to traverse at each descent into the data structure. >>> directions = part['loc'] >>> curr = data >>> special_flag = False >>> for key in directions: >>> if isinstance(key, list): >>> # special case for bad keys >>> special_flag = True >>> break >>> else: >>> # normal case for bad values >>> curr = curr[key] >>> if special_flag: >>> assert part['data'] in curr.keys() >>> assert part['data'] is key[1] >>> else: >>> assert part['data'] is curr
- kwcoco.util.util_json.indexable_allclose(dct1, dct2, return_info=False)[source]¶
Walks through two nested data structures and ensures that everything is roughly the same.
Note
Use the version in ubelt instead
- Parameters
dct1 – a nested indexable item
dct2 – a nested indexable item
Example
>>> from kwcoco.util.util_json import indexable_allclose >>> dct1 = { >>> 'foo': [1.222222, 1.333], >>> 'bar': 1, >>> 'baz': [], >>> } >>> dct2 = { >>> 'foo': [1.22222, 1.333], >>> 'bar': 1, >>> 'baz': [], >>> } >>> assert indexable_allclose(dct1, dct2)
- class kwcoco.util.util_monkey.SupressPrint(*mods, **kw)[source]¶
Bases:
object
Temporarily replace the print function in a module with a noop
- Parameters
*mods – the modules to disable print in
**kw – only accepts “enabled” enabled (bool, default=True): enables or disables this context
- class kwcoco.util.util_monkey.Reloadable[source]¶
Bases:
type
This is a metaclass that overrides the behavior of isinstance and issubclass when invoked on classes derived from this such that they only check that the module and class names agree, which are preserved through module reloads, whereas class instances are not.
This is useful for interactive develoment, but should be removed in production.
Example
>>> from kwcoco.util.util_monkey import * # NOQA >>> # Illustrate what happens with a reload when using this utility >>> # versus without it. >>> class Base1: >>> ... >>> class Derived1(Base1): >>> ... >>> @Reloadable.add_metaclass >>> class Base2: >>> ... >>> class Derived2(Base2): >>> ... >>> inst1 = Derived1() >>> inst2 = Derived2() >>> assert isinstance(inst1, Derived1) >>> assert isinstance(inst2, Derived2) >>> # Simulate reload >>> class Base1: >>> ... >>> class Derived1(Base1): >>> ... >>> @Reloadable.add_metaclass >>> class Base2: >>> ... >>> class Derived2(Base2): >>> ... >>> assert not isinstance(inst1, Derived1) >>> assert isinstance(inst2, Derived2)
- kwcoco.util.util_parallel.coerce_num_workers(num_workers='auto', minimum=0)[source]¶
Return some number of CPUs based on a chosen hueristic
- Parameters
num_workers (int | str) – A special string code, or an exact number of cpus
minimum (int) – minimum workers we are allowed to return
- Returns
number of available cpus based on request parameters
- Return type
CommandLine
xdoctest -m kwcoco.util.util_parallel coerce_num_workers
Example
>>> from kwcoco.util.util_parallel import * # NOQA >>> print(coerce_num_workers('all')) >>> print(coerce_num_workers('avail')) >>> print(coerce_num_workers('auto')) >>> print(coerce_num_workers('all-2')) >>> print(coerce_num_workers('avail-2')) >>> print(coerce_num_workers('all/2')) >>> print(coerce_num_workers('min(all,2)')) >>> print(coerce_num_workers('[max(all,2)][0]')) >>> import pytest >>> with pytest.raises(Exception): >>> print(coerce_num_workers('all + 1' + (' + 1' * 100))) >>> total_cpus = coerce_num_workers('all') >>> assert coerce_num_workers('all-2') == max(total_cpus - 2, 0) >>> assert coerce_num_workers('all-100') == max(total_cpus - 100, 0) >>> assert coerce_num_workers('avail') <= coerce_num_workers('all') >>> assert coerce_num_workers(3) == max(3, 0)
Rerooting is harder than you would think
- kwcoco.util.util_reroot.resolve_relative_to(path, dpath, strict=False)[source]¶
Given a path, try to resolve its symlinks such that it is relative to the given dpath.
Example
>>> from kwcoco.util.util_reroot import * # NOQA >>> import os >>> def _symlink(self, target, verbose=0): >>> return ub.Path(ub.symlink(target, self, verbose=verbose)) >>> ub.Path._symlink = _symlink >>> # >>> # TODO: try to enumerate all basic cases >>> # >>> base = ub.Path.appdir('kwcoco/tests/reroot') >>> base.delete().ensuredir() >>> # >>> drive1 = (base / 'drive1').ensuredir() >>> drive2 = (base / 'drive2').ensuredir() >>> # >>> data_repo1 = (drive1 / 'data_repo1').ensuredir() >>> cache = (data_repo1 / '.cache').ensuredir() >>> real_file1 = (cache / 'real_file1').touch() >>> # >>> real_bundle = (data_repo1 / 'real_bundle').ensuredir() >>> real_assets = (real_bundle / 'assets').ensuredir() >>> # >>> # Symlink file outside of the bundle >>> link_file1 = (real_assets / 'link_file1')._symlink(real_file1) >>> real_file2 = (real_assets / 'real_file2').touch() >>> link_file2 = (real_assets / 'link_file2')._symlink(real_file2) >>> # >>> # >>> # A symlink to the data repo >>> data_repo2 = (drive1 / 'data_repo2')._symlink(data_repo1) >>> data_repo3 = (drive2 / 'data_repo3')._symlink(data_repo1) >>> data_repo4 = (drive2 / 'data_repo4')._symlink(data_repo2) >>> # >>> # A prediction repo TODO >>> pred_repo5 = (drive2 / 'pred_repo5').ensuredir() >>> # >>> # _ = ub.cmd(f'tree -a {base}', verbose=3) >>> # >>> fpaths = [] >>> for r, ds, fs in os.walk(base, followlinks=True): >>> for f in fs: >>> if 'file' in f: >>> fpath = ub.Path(r) / f >>> fpaths.append(fpath) >>> # >>> # >>> dpath = real_bundle.resolve() >>> # >>> for path in fpaths: >>> # print(f'{path}') >>> # print(f'{path.resolve()=}') >>> resolved_rel = resolve_relative_to(path, dpath) >>> print('resolved_rel = {!r}'.format(resolved_rel))
Extensions to sklearn constructs
- class kwcoco.util.util_sklearn.StratifiedGroupKFold(n_splits=3, shuffle=False, random_state=None)[source]¶
Bases:
_BaseKFold
Stratified K-Folds cross-validator with Grouping
Provides train/test indices to split data in train/test sets.
This cross-validation object is a variation of GroupKFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class.
This is an old interface and should likely be refactored and modernized.
- Parameters
n_splits (int, default=3) – Number of folds. Must be at least 2.
- _make_test_folds(X, y=None, groups=None)[source]¶
- Parameters
X (ndarray) – data
y (ndarray) – labels
groups (ndarray) – groupids for items. Items with the same groupid must be placed in the same group.
- Returns
test_folds
- Return type
Example
>>> from kwcoco.util.util_sklearn import * # NOQA >>> import kwarray >>> rng = kwarray.ensure_rng(0) >>> groups = [1, 1, 3, 4, 2, 2, 7, 8, 8] >>> y = [1, 1, 1, 1, 2, 2, 2, 3, 3] >>> X = np.empty((len(y), 0)) >>> self = StratifiedGroupKFold(random_state=rng, shuffle=True) >>> skf_list = list(self.split(X=X, y=y, groups=groups)) >>> import ubelt as ub >>> print(ub.urepr(skf_list, nl=1, with_dtype=False)) [ (np.array([2, 3, 4, 5, 6]), np.array([0, 1, 7, 8])), (np.array([0, 1, 2, 7, 8]), np.array([3, 4, 5, 6])), (np.array([0, 1, 3, 4, 5, 6, 7, 8]), np.array([2])), ]
- _abc_impl = <_abc_data object>¶
Special non-general json functions
Truncate utility based on python-slugify.
https://pypi.org/project/python-slugify/1.2.2/
- kwcoco.util.util_truncate._trunc_op(string, max_length, trunc_loc, trunc_char='~')[source]¶
Example
>>> from kwcoco.util.util_truncate import _trunc_op >>> string = 'DarnOvercastSculptureTipperBlazerConcaveUnsuitedDerangedHexagonRockband' >>> max_length = 16 >>> trunc_loc = 0.5 >>> _trunc_op(string, max_length, trunc_loc)
>>> from kwcoco.util.util_truncate import _trunc_op >>> max_length = 16 >>> string = 'a' * 16 >>> _trunc_op(string, max_length, trunc_loc)
>>> string = 'a' * 17 >>> _trunc_op(string, max_length, trunc_loc)
- kwcoco.util.util_truncate.smart_truncate(string, max_length=0, separator=' ', trunc_loc=0.5, trunc_char='~')[source]¶
Truncate a string. :param string (str): string for modification :param max_length (int): output string length :param word_boundary (bool): :param save_order (bool): if True then word order of output string is like input string :param separator (str): separator between words :param trunc_loc (float): fraction of location where to remove the text
trunc_char (str): the character to denote where truncation is starting
- Returns
- kwcoco.util.util_windows.fix_msys_path(path)[source]¶
Windows is so special. When using msys bash if you pass a path on the CLI it resolves /c to C:/, but if you have you path as part of a config string, it doesnt know how to do that, and at that point Python doesn’t handle the msys style /c paths. This is a hack detects and fixes this in this location.
Example
>>> print(fix_msys_path('/c/Users/foobar')) C:/Users/foobar >>> print(fix_msys_path(r'\c\Users\foobar')) C:/Users\foobar >>> print(fix_msys_path(r'\d\Users\foobar')) D:/Users\foobar >>> print(fix_msys_path(r'\z')) Z:/ >>> import pathlib >>> assert fix_msys_path(pathlib.Path(r'\z')) == pathlib.Path('Z:/')
Module contents¶
mkinit ~/code/kwcoco/kwcoco/util/__init__.py -w mkinit ~/code/kwcoco/kwcoco/util/__init__.py –lazy
- kwcoco.util.ALLOF(*TYPES)¶
- kwcoco.util.ANYOF(*TYPES)¶
- kwcoco.util.ARRAY(TYPE={}, **kw)¶
https://json-schema.org/understanding-json-schema/reference/array.html
Example
>>> from kwcoco.util.jsonschema_elements import * # NOQA >>> ARRAY(numItems=3) >>> schema = ARRAY(minItems=3) >>> schema.validate() {'type': 'array', 'items': {}, 'minItems': 3}
- class kwcoco.util.Archive(fpath=None, mode='r', backend=None, file=None)[source]¶
Bases:
object
Abstraction over zipfile and tarfile
Todo
see if we can use one of these other tools instead
Example
>>> from kwcoco.util.util_archive import Archive >>> import ubelt as ub >>> dpath = ub.Path.appdir('kwcoco', 'tests', 'util', 'archive') >>> dpath.delete().ensuredir() >>> # Test write mode >>> mode = 'w' >>> arc_zip = Archive(str(dpath / 'demo.zip'), mode=mode) >>> arc_tar = Archive(str(dpath / 'demo.tar.gz'), mode=mode) >>> open(dpath / 'data_1only.txt', 'w').write('bazbzzz') >>> open(dpath / 'data_2only.txt', 'w').write('buzzz') >>> open(dpath / 'data_both.txt', 'w').write('foobar') >>> # >>> arc_zip.add(dpath / 'data_both.txt') >>> arc_zip.add(dpath / 'data_1only.txt') >>> # >>> arc_tar.add(dpath / 'data_both.txt') >>> arc_tar.add(dpath / 'data_2only.txt') >>> # >>> arc_zip.close() >>> arc_tar.close() >>> # >>> # Test read mode >>> arc_zip = Archive(str(dpath / 'demo.zip'), mode='r') >>> arc_tar = Archive(str(dpath / 'demo.tar.gz'), mode='r') >>> # Test names >>> name = 'data_both.txt' >>> assert name in arc_zip.names() >>> assert name in arc_tar.names() >>> # Test read >>> assert arc_zip.read(name, mode='r') == 'foobar' >>> assert arc_tar.read(name, mode='r') == 'foobar' >>> # >>> # Test extractall >>> extract_dpath = ub.ensuredir(str(dpath / 'extracted')) >>> extracted1 = arc_zip.extractall(extract_dpath) >>> extracted2 = arc_tar.extractall(extract_dpath) >>> for fpath in extracted2: >>> print(open(fpath, 'r').read()) >>> for fpath in extracted1: >>> print(open(fpath, 'r').read())
- Parameters
fpath (str | None) – path to open
mode (str) – either r or w
backend (str | ModuleType | None) – either tarfile, zipfile string or module.
file (tarfile.TarFile | zipfile.ZipFile | None) – the open backend file if it already exists. If not set, than fpath will open it.
- _available_backends = {'tarfile': <module 'tarfile' from '/home/docs/checkouts/readthedocs.org/user_builds/kwcoco/envs/v0.6.4/lib/python3.7/tarfile.py'>, 'zipfile': <module 'zipfile' from '/home/docs/.pyenv/versions/3.7.9/lib/python3.7/zipfile.py'>}¶
- read(name, mode='rb')[source]¶
Read data directly out of the archive.
- Parameters
name (str) – the name of the archive member to read
mode (str) – This is a conceptual parameter that emulates the usual open mode. Defaults to “rb”, which returns data as raw bytes. If “r” will decode the bytes into utf8-text.
- class kwcoco.util.ContainerElements[source]¶
Bases:
object
Types that contain other types
Example
>>> from kwcoco.util.jsonschema_elements import * # NOQA >>> print(elem.ARRAY().validate()) >>> print(elem.OBJECT().validate()) >>> print(elem.OBJECT().validate()) {'type': 'array', 'items': {}} {'type': 'object', 'properties': {}} {'type': 'object', 'properties': {}}
- ARRAY(TYPE={}, **kw)[source]¶
https://json-schema.org/understanding-json-schema/reference/array.html
Example
>>> from kwcoco.util.jsonschema_elements import * # NOQA >>> ARRAY(numItems=3) >>> schema = ARRAY(minItems=3) >>> schema.validate() {'type': 'array', 'items': {}, 'minItems': 3}
- OBJECT(PROPERTIES={}, **kw)[source]¶
https://json-schema.org/understanding-json-schema/reference/object.html
Example
>>> import jsonschema >>> schema = elem.OBJECT() >>> jsonschema.validate({}, schema) >>> # >>> import jsonschema >>> schema = elem.OBJECT({ >>> 'key1': elem.ANY(), >>> 'key2': elem.ANY(), >>> }, required=['key1']) >>> jsonschema.validate({'key1': None}, schema) >>> # >>> import jsonschema >>> schema = elem.OBJECT({ >>> 'key1': elem.OBJECT({'arr': elem.ARRAY()}), >>> 'key2': elem.ANY(), >>> }, required=['key1'], title='a title') >>> schema.validate() >>> print('schema = {}'.format(ub.urepr(schema, sort=1, nl=-1))) >>> jsonschema.validate({'key1': {'arr': []}}, schema) schema = { 'properties': { 'key1': { 'properties': { 'arr': {'items': {}, 'type': 'array'} }, 'type': 'object' }, 'key2': {} }, 'required': ['key1'], 'title': 'a title', 'type': 'object' }
- class kwcoco.util.DictLike[source]¶
Bases:
NiceRepr
- An inherited class must specify the
getitem
,setitem
, and keys
methods.
A class is dictionary like if it has:
__iter__
,__len__
,__contains__
,__getitem__
,items
,keys
,values
,get
,and if it should be writable it should have:
__delitem__
,__setitem__
,update
,And perhaps:
copy
,__iter__
,__len__
,__contains__
,__getitem__
,items
,keys
,values
,get
,and if it should be writable it should have:
__delitem__
,__setitem__
,update
,And perhaps:
copy
,- asdict()¶
- Return type
Dict
- An inherited class must specify the
- class kwcoco.util.Element(base, options={}, _magic=None)[source]¶
Bases:
dict
A dictionary used to define an element of a JSON Schema.
The exact keys/values for the element will depend on the type of element being described. The
SchemaElements
defines exactly what these are for the core elements. (e.g. OBJECT, INTEGER, NULL, ARRAY, ANYOF)Example
>>> from kwcoco.coco_schema import * # NOQA >>> self = Element(base={'type': 'demo'}, options={'opt1', 'opt2'}) >>> new = self(opt1=3) >>> print('self = {}'.format(ub.urepr(self, nl=1, sort=1))) >>> print('new = {}'.format(ub.urepr(new, nl=1, sort=1))) >>> print('new2 = {}'.format(ub.urepr(new(), nl=1, sort=1))) >>> print('new3 = {}'.format(ub.urepr(new(title='myvar'), nl=1, sort=1))) >>> print('new4 = {}'.format(ub.urepr(new(title='myvar')(examples=['']), nl=1, sort=1))) >>> print('new5 = {}'.format(ub.urepr(new(badattr=True), nl=1, sort=1))) self = { 'type': 'demo', } new = { 'opt1': 3, 'type': 'demo', } new2 = { 'opt1': 3, 'type': 'demo', } new3 = { 'opt1': 3, 'title': 'myvar', 'type': 'demo', } new4 = { 'examples': [''], 'opt1': 3, 'title': 'myvar', 'type': 'demo', } new5 = { 'opt1': 3, 'type': 'demo', }
- Parameters
base (dict) – the keys / values this schema must contain
options (dict) – the keys / values this schema may contain
_magic (callable | None) – called when creating an instance of this schema element. Allows convinience attributes to be converted to the formal jsonschema specs. TODO: _magic is a terrible name, we need to rename it with something descriptive.
- class kwcoco.util.IndexableWalker(data, dict_cls=(<class 'dict'>, ), list_cls=(<class 'list'>, <class 'tuple'>))[source]¶
Bases:
Generator
Traverses through a nested tree-liked indexable structure.
Generates a path and value to each node in the structure. The path is a list of indexes which if applied in order will reach the value.
The
__setitem__
method can be used to modify a nested value based on the path returned by the generator.When generating values, you can use “send” to prevent traversal of a particular branch.
- RelatedWork:
- https://pypi.org/project/python-benedict/ - implements a dictionary
subclass with similar nested indexing abilities.
- Variables
Example
>>> import ubelt as ub >>> # Given Nested Data >>> data = { >>> 'foo': {'bar': 1}, >>> 'baz': [{'biz': 3}, {'buz': [4, 5, 6]}], >>> } >>> # Create an IndexableWalker >>> walker = ub.IndexableWalker(data) >>> # We iterate over the data as if it was flat >>> # ignore the <want> string due to order issues on older Pythons >>> # xdoctest: +IGNORE_WANT >>> for path, val in walker: >>> print(path) ['foo'] ['baz'] ['baz', 0] ['baz', 1] ['baz', 1, 'buz'] ['baz', 1, 'buz', 0] ['baz', 1, 'buz', 1] ['baz', 1, 'buz', 2] ['baz', 0, 'biz'] ['foo', 'bar'] >>> # We can use "paths" as keys to getitem into the walker >>> path = ['baz', 1, 'buz', 2] >>> val = walker[path] >>> assert val == 6 >>> # We can use "paths" as keys to setitem into the walker >>> assert data['baz'][1]['buz'][2] == 6 >>> walker[path] = 7 >>> assert data['baz'][1]['buz'][2] == 7 >>> # We can use "paths" as keys to delitem into the walker >>> assert data['baz'][1]['buz'][1] == 5 >>> del walker[['baz', 1, 'buz', 1]] >>> assert data['baz'][1]['buz'][1] == 7
Example
>>> # Create nested data >>> # xdoctest: +REQUIRES(module:numpy) >>> import numpy as np >>> import ubelt as ub >>> data = ub.ddict(lambda: int) >>> data['foo'] = ub.ddict(lambda: int) >>> data['bar'] = np.array([1, 2, 3]) >>> data['foo']['a'] = 1 >>> data['foo']['b'] = np.array([1, 2, 3]) >>> data['foo']['c'] = [1, 2, 3] >>> data['baz'] = 3 >>> print('data = {}'.format(ub.repr2(data, nl=True))) >>> # We can walk through every node in the nested tree >>> walker = ub.IndexableWalker(data) >>> for path, value in walker: >>> print('walk path = {}'.format(ub.repr2(path, nl=0))) >>> if path[-1] == 'c': >>> # Use send to prevent traversing this branch >>> got = walker.send(False) >>> # We can modify the value based on the returned path >>> walker[path] = 'changed the value of c' >>> print('data = {}'.format(ub.repr2(data, nl=True))) >>> assert data['foo']['c'] == 'changed the value of c'
Example
>>> # Test sending false for every data item >>> import ubelt as ub >>> data = {1: [1, 2, 3], 2: [1, 2, 3]} >>> walker = ub.IndexableWalker(data) >>> # Sending false means you wont traverse any further on that path >>> num_iters_v1 = 0 >>> for path, value in walker: >>> print('[v1] walk path = {}'.format(ub.repr2(path, nl=0))) >>> walker.send(False) >>> num_iters_v1 += 1 >>> num_iters_v2 = 0 >>> for path, value in walker: >>> # When we dont send false we walk all the way down >>> print('[v2] walk path = {}'.format(ub.repr2(path, nl=0))) >>> num_iters_v2 += 1 >>> assert num_iters_v1 == 2 >>> assert num_iters_v2 == 8
Example
>>> # Test numpy >>> # xdoctest: +REQUIRES(CPython) >>> # xdoctest: +REQUIRES(module:numpy) >>> import ubelt as ub >>> import numpy as np >>> # By default we don't recurse into ndarrays because they >>> # Are registered as an indexable class >>> data = {2: np.array([1, 2, 3])} >>> walker = ub.IndexableWalker(data) >>> num_iters = 0 >>> for path, value in walker: >>> print('walk path = {}'.format(ub.repr2(path, nl=0))) >>> num_iters += 1 >>> assert num_iters == 1 >>> # Currently to use top-level ndarrays, you need to extend what the >>> # list class is. This API may change in the future to be easier >>> # to work with. >>> data = np.random.rand(3, 5) >>> walker = ub.IndexableWalker(data, list_cls=(list, tuple, np.ndarray)) >>> num_iters = 0 >>> for path, value in walker: >>> print('walk path = {}'.format(ub.repr2(path, nl=0))) >>> num_iters += 1 >>> assert num_iters == 3 + 3 * 5
- throw(typ[, val[, tb]]) raise exception in generator, [source]¶
return next yielded value or raise StopIteration.
- _walk(data=None, prefix=[])[source]¶
Defines the underlying generator used by IndexableWalker
- Yields
- Tuple[List, Any] | None – path (List) - a “path” through the nested data structure
value (Any) - the value indexed by that “path”.
Can also yield None in the case that send is called on the generator.
- allclose(other, rel_tol=1e-09, abs_tol=0.0, return_info=False)[source]¶
Walks through this and another nested data structures and checks if everything is roughly the same.
- Parameters
other (IndexableWalker | List | Dict) – a nested indexable item to compare against.
rel_tol (float) – maximum difference for being considered “close”, relative to the magnitude of the input values
abs_tol (float) – maximum difference for being considered “close”, regardless of the magnitude of the input values
return_info (bool, default=False) – if true, return extra info dict
- Returns
A boolean result if
return_info
is false, otherwise a tuple of the boolean result and an “info” dict containing detailed results indicating what matched and what did not.- Return type
Example
>>> import ubelt as ub >>> items1 = ub.IndexableWalker({ >>> 'foo': [1.222222, 1.333], >>> 'bar': 1, >>> 'baz': [], >>> }) >>> items2 = ub.IndexableWalker({ >>> 'foo': [1.22222, 1.333], >>> 'bar': 1, >>> 'baz': [], >>> }) >>> flag, return_info = items1.allclose(items2, return_info=True) >>> print('return_info = {}'.format(ub.repr2(return_info, nl=1))) >>> print('flag = {!r}'.format(flag)) >>> for p1, v1, v2 in return_info['faillist']: >>> v1_ = items1[p1] >>> print('*fail p1, v1, v2 = {}, {}, {}'.format(p1, v1, v2)) >>> for p1 in return_info['passlist']: >>> v1_ = items1[p1] >>> print('*pass p1, v1_ = {}, {}'.format(p1, v1_)) >>> assert not flag
>>> import ubelt as ub >>> items1 = ub.IndexableWalker({ >>> 'foo': [1.0000000000000000000000001, 1.], >>> 'bar': 1, >>> 'baz': [], >>> }) >>> items2 = ub.IndexableWalker({ >>> 'foo': [0.9999999999999999, 1.], >>> 'bar': 1, >>> 'baz': [], >>> }) >>> flag, return_info = items1.allclose(items2, return_info=True) >>> print('return_info = {}'.format(ub.repr2(return_info, nl=1))) >>> print('flag = {!r}'.format(flag)) >>> assert flag
Example
>>> import ubelt as ub >>> flag, return_info = ub.IndexableWalker([]).allclose(ub.IndexableWalker([]), return_info=True) >>> print('return_info = {!r}'.format(return_info)) >>> print('flag = {!r}'.format(flag)) >>> assert flag
Example
>>> import ubelt as ub >>> flag = ub.IndexableWalker([]).allclose([], return_info=False) >>> print('flag = {!r}'.format(flag)) >>> assert flag
Example
>>> import ubelt as ub >>> flag, return_info = ub.IndexableWalker([]).allclose([1], return_info=True) >>> print('return_info = {!r}'.format(return_info)) >>> print('flag = {!r}'.format(flag)) >>> assert not flag
Example
>>> # xdoctest: +REQUIRES(module:numpy) >>> import ubelt as ub >>> import numpy as np >>> a = np.random.rand(3, 5) >>> b = a + 1 >>> wa = ub.IndexableWalker(a, list_cls=(np.ndarray,)) >>> wb = ub.IndexableWalker(b, list_cls=(np.ndarray,)) >>> flag, return_info = wa.allclose(wb, return_info=True) >>> print('return_info = {!r}'.format(return_info)) >>> print('flag = {!r}'.format(flag)) >>> assert not flag >>> a = np.random.rand(3, 5) >>> b = a.copy() + 1e-17 >>> wa = ub.IndexableWalker([a], list_cls=(np.ndarray, list)) >>> wb = ub.IndexableWalker([b], list_cls=(np.ndarray, list)) >>> flag, return_info = wa.allclose(wb, return_info=True) >>> assert flag >>> print('return_info = {!r}'.format(return_info)) >>> print('flag = {!r}'.format(flag))
- _abc_impl = <_abc_data object>¶
- kwcoco.util.NOT(TYPE)¶
- kwcoco.util.OBJECT(PROPERTIES={}, **kw)¶
https://json-schema.org/understanding-json-schema/reference/object.html
Example
>>> import jsonschema >>> schema = elem.OBJECT() >>> jsonschema.validate({}, schema) >>> # >>> import jsonschema >>> schema = elem.OBJECT({ >>> 'key1': elem.ANY(), >>> 'key2': elem.ANY(), >>> }, required=['key1']) >>> jsonschema.validate({'key1': None}, schema) >>> # >>> import jsonschema >>> schema = elem.OBJECT({ >>> 'key1': elem.OBJECT({'arr': elem.ARRAY()}), >>> 'key2': elem.ANY(), >>> }, required=['key1'], title='a title') >>> schema.validate() >>> print('schema = {}'.format(ub.urepr(schema, sort=1, nl=-1))) >>> jsonschema.validate({'key1': {'arr': []}}, schema) schema = { 'properties': { 'key1': { 'properties': { 'arr': {'items': {}, 'type': 'array'} }, 'type': 'object' }, 'key2': {} }, 'required': ['key1'], 'title': 'a title', 'type': 'object' }
- kwcoco.util.ONEOF(*TYPES)¶
- class kwcoco.util.QuantifierElements[source]¶
Bases:
object
Quantifier types
https://json-schema.org/understanding-json-schema/reference/combining.html#allof
Example
>>> from kwcoco.util.jsonschema_elements import * # NOQA >>> elem.ANYOF(elem.STRING, elem.NUMBER).validate() >>> elem.ONEOF(elem.STRING, elem.NUMBER).validate() >>> elem.NOT(elem.NULL).validate() >>> elem.NOT(elem.ANY).validate() >>> elem.ANY.validate()
- property ANY¶
- class kwcoco.util.ScalarElements[source]¶
Bases:
object
Single-valued elements
- property NULL¶
//json-schema.org/understanding-json-schema/reference/null.html
- Type
https
- property BOOLEAN¶
//json-schema.org/understanding-json-schema/reference/null.html
- Type
https
- property STRING¶
//json-schema.org/understanding-json-schema/reference/string.html
- Type
https
- property NUMBER¶
//json-schema.org/understanding-json-schema/reference/numeric.html#number
- Type
https
- property INTEGER¶
//json-schema.org/understanding-json-schema/reference/numeric.html#integer
- Type
https
- class kwcoco.util.SchemaElements[source]¶
Bases:
ScalarElements
,QuantifierElements
,ContainerElements
Functional interface into defining jsonschema structures.
See mixin classes for details.
References
https://json-schema.org/understanding-json-schema/
Todo
[ ] Generics: title, description, default, examples
CommandLine
xdoctest -m /home/joncrall/code/kwcoco/kwcoco/util/jsonschema_elements.py SchemaElements
Example
>>> from kwcoco.util.jsonschema_elements import * # NOQA >>> elem = SchemaElements() >>> elem.ARRAY(elem.ANY()) >>> schema = OBJECT({ >>> 'prop1': ARRAY(INTEGER, minItems=3), >>> 'prop2': ARRAY(STRING, numItems=2), >>> 'prop3': ARRAY(OBJECT({ >>> 'subprob1': NUMBER, >>> 'subprob2': NUMBER, >>> })) >>> }) >>> print('schema = {}'.format(ub.urepr(schema, nl=2, sort=1))) schema = { 'properties': { 'prop1': {'items': {'type': 'integer'}, 'minItems': 3, 'type': 'array'}, 'prop2': {'items': {'type': 'string'}, 'maxItems': 2, 'minItems': 2, 'type': 'array'}, 'prop3': {'items': {'properties': {'subprob1': {'type': 'number'}, 'subprob2': {'type': 'number'}}, 'type': 'object'}, 'type': 'array'}, }, 'type': 'object', }
>>> TYPE = elem.OBJECT({ >>> 'p1': ANY, >>> 'p2': ANY, >>> }, required=['p1']) >>> import jsonschema >>> inst = {'p1': None} >>> jsonschema.validate(inst, schema=TYPE) >>> #jsonschema.validate({'p2': None}, schema=TYPE)
- class kwcoco.util.StratifiedGroupKFold(n_splits=3, shuffle=False, random_state=None)[source]¶
Bases:
_BaseKFold
Stratified K-Folds cross-validator with Grouping
Provides train/test indices to split data in train/test sets.
This cross-validation object is a variation of GroupKFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class.
This is an old interface and should likely be refactored and modernized.
- Parameters
n_splits (int, default=3) – Number of folds. Must be at least 2.
- _make_test_folds(X, y=None, groups=None)[source]¶
- Parameters
X (ndarray) – data
y (ndarray) – labels
groups (ndarray) – groupids for items. Items with the same groupid must be placed in the same group.
- Returns
test_folds
- Return type
Example
>>> from kwcoco.util.util_sklearn import * # NOQA >>> import kwarray >>> rng = kwarray.ensure_rng(0) >>> groups = [1, 1, 3, 4, 2, 2, 7, 8, 8] >>> y = [1, 1, 1, 1, 2, 2, 2, 3, 3] >>> X = np.empty((len(y), 0)) >>> self = StratifiedGroupKFold(random_state=rng, shuffle=True) >>> skf_list = list(self.split(X=X, y=y, groups=groups)) >>> import ubelt as ub >>> print(ub.urepr(skf_list, nl=1, with_dtype=False)) [ (np.array([2, 3, 4, 5, 6]), np.array([0, 1, 7, 8])), (np.array([0, 1, 2, 7, 8]), np.array([3, 4, 5, 6])), (np.array([0, 1, 3, 4, 5, 6, 7, 8]), np.array([2])), ]
- _abc_impl = <_abc_data object>¶
- kwcoco.util.ensure_json_serializable(dict_, normalize_containers=False, verbose=0)[source]¶
Attempt to convert common types (e.g. numpy) into something json complient
Convert numpy and tuples into lists
- Parameters
normalize_containers (bool) – if True, normalizes dict containers to be standard python structures. Defaults to False.
Example
>>> data = ub.ddict(lambda: int) >>> data['foo'] = ub.ddict(lambda: int) >>> data['bar'] = np.array([1, 2, 3]) >>> data['foo']['a'] = 1 >>> data['foo']['b'] = (1, np.array([1, 2, 3]), {3: np.int32(3), 4: np.float16(1.0)}) >>> dict_ = data >>> print(ub.urepr(data, nl=-1)) >>> assert list(find_json_unserializable(data)) >>> result = ensure_json_serializable(data, normalize_containers=True) >>> print(ub.urepr(result, nl=-1)) >>> assert not list(find_json_unserializable(result)) >>> assert type(result) is dict
- kwcoco.util.find_json_unserializable(data, quickcheck=False)[source]¶
Recurse through json datastructure and find any component that causes a serialization error. Record the location of these errors in the datastructure as we recurse through the call tree.
- Parameters
data (object) – data that should be json serializable
quickcheck (bool) – if True, check the entire datastructure assuming its ok before doing the python-based recursive logic.
- Returns
list of “bad part” dictionaries containing items
’value’ - the value that caused the serialization error
’loc’ - which contains a list of key/indexes that can be used to lookup the location of the unserializable value. If the “loc” is a list, then it indicates a rare case where a key in a dictionary is causing the serialization error.
- Return type
List[Dict]
Example
>>> from kwcoco.util.util_json import * # NOQA >>> part = ub.ddict(lambda: int) >>> part['foo'] = ub.ddict(lambda: int) >>> part['bar'] = np.array([1, 2, 3]) >>> part['foo']['a'] = 1 >>> # Create a dictionary with two unserializable parts >>> data = [1, 2, {'nest1': [2, part]}, {frozenset({'badkey'}): 3, 2: 4}] >>> parts = list(find_json_unserializable(data)) >>> print('parts = {}'.format(ub.urepr(parts, nl=1))) >>> # Check expected structure of bad parts >>> assert len(parts) == 2 >>> part = parts[1] >>> assert list(part['loc']) == [2, 'nest1', 1, 'bar'] >>> # We can use the "loc" to find the bad value >>> for part in parts: >>> # "loc" is a list of directions containing which keys/indexes >>> # to traverse at each descent into the data structure. >>> directions = part['loc'] >>> curr = data >>> special_flag = False >>> for key in directions: >>> if isinstance(key, list): >>> # special case for bad keys >>> special_flag = True >>> break >>> else: >>> # normal case for bad values >>> curr = curr[key] >>> if special_flag: >>> assert part['data'] in curr.keys() >>> assert part['data'] is key[1] >>> else: >>> assert part['data'] is curr
- kwcoco.util.indexable_allclose(dct1, dct2, return_info=False)[source]¶
Walks through two nested data structures and ensures that everything is roughly the same.
Note
Use the version in ubelt instead
- Parameters
dct1 – a nested indexable item
dct2 – a nested indexable item
Example
>>> from kwcoco.util.util_json import indexable_allclose >>> dct1 = { >>> 'foo': [1.222222, 1.333], >>> 'bar': 1, >>> 'baz': [], >>> } >>> dct2 = { >>> 'foo': [1.22222, 1.333], >>> 'bar': 1, >>> 'baz': [], >>> } >>> assert indexable_allclose(dct1, dct2)
- kwcoco.util.resolve_directory_symlinks(path)[source]¶
Only resolve symlinks of directories, not the base file
- kwcoco.util.resolve_relative_to(path, dpath, strict=False)[source]¶
Given a path, try to resolve its symlinks such that it is relative to the given dpath.
Example
>>> from kwcoco.util.util_reroot import * # NOQA >>> import os >>> def _symlink(self, target, verbose=0): >>> return ub.Path(ub.symlink(target, self, verbose=verbose)) >>> ub.Path._symlink = _symlink >>> # >>> # TODO: try to enumerate all basic cases >>> # >>> base = ub.Path.appdir('kwcoco/tests/reroot') >>> base.delete().ensuredir() >>> # >>> drive1 = (base / 'drive1').ensuredir() >>> drive2 = (base / 'drive2').ensuredir() >>> # >>> data_repo1 = (drive1 / 'data_repo1').ensuredir() >>> cache = (data_repo1 / '.cache').ensuredir() >>> real_file1 = (cache / 'real_file1').touch() >>> # >>> real_bundle = (data_repo1 / 'real_bundle').ensuredir() >>> real_assets = (real_bundle / 'assets').ensuredir() >>> # >>> # Symlink file outside of the bundle >>> link_file1 = (real_assets / 'link_file1')._symlink(real_file1) >>> real_file2 = (real_assets / 'real_file2').touch() >>> link_file2 = (real_assets / 'link_file2')._symlink(real_file2) >>> # >>> # >>> # A symlink to the data repo >>> data_repo2 = (drive1 / 'data_repo2')._symlink(data_repo1) >>> data_repo3 = (drive2 / 'data_repo3')._symlink(data_repo1) >>> data_repo4 = (drive2 / 'data_repo4')._symlink(data_repo2) >>> # >>> # A prediction repo TODO >>> pred_repo5 = (drive2 / 'pred_repo5').ensuredir() >>> # >>> # _ = ub.cmd(f'tree -a {base}', verbose=3) >>> # >>> fpaths = [] >>> for r, ds, fs in os.walk(base, followlinks=True): >>> for f in fs: >>> if 'file' in f: >>> fpath = ub.Path(r) / f >>> fpaths.append(fpath) >>> # >>> # >>> dpath = real_bundle.resolve() >>> # >>> for path in fpaths: >>> # print(f'{path}') >>> # print(f'{path.resolve()=}') >>> resolved_rel = resolve_relative_to(path, dpath) >>> print('resolved_rel = {!r}'.format(resolved_rel))
- kwcoco.util.smart_truncate(string, max_length=0, separator=' ', trunc_loc=0.5, trunc_char='~')[source]¶
Truncate a string. :param string (str): string for modification :param max_length (int): output string length :param word_boundary (bool): :param save_order (bool): if True then word order of output string is like input string :param separator (str): separator between words :param trunc_loc (float): fraction of location where to remove the text
trunc_char (str): the character to denote where truncation is starting
- Returns
Submodules¶
kwcoco.__main__ module¶
kwcoco._helpers module¶
These items were split out of coco_dataset.py which is becoming too big
These are helper data structures used to do things like auto-increment ids, recycle ids, do renaming, extend sortedcontainers etc…
- class kwcoco._helpers._NextId(parent)[source]¶
Bases:
object
Helper class to tracks unused ids for new items
- class kwcoco._helpers._ID_Remapper(reuse=False)[source]¶
Bases:
object
Helper to recycle ids for unions.
For each dataset we create a mapping between each old id and a new id. If possible and reuse=True we allow the new id to match the old id. After each dataset is finished we mark all those ids as used and subsequent new-ids cannot be chosen from that pool.
- Parameters
reuse (bool) – if True we are allowed to reuse ids as long as they haven’t been used before.
Example
>>> video_trackids = [[1, 1, 3, 3, 200, 4], [204, 1, 2, 3, 3, 4, 5, 9]] >>> self = _ID_Remapper(reuse=True) >>> for tids in video_trackids: >>> new_tids = [self.remap(old_tid) for old_tid in tids] >>> self.block_seen() >>> print('new_tids = {!r}'.format(new_tids)) new_tids = [1, 1, 3, 3, 200, 4] new_tids = [204, 205, 2, 206, 206, 207, 5, 9] >>> # >>> self = _ID_Remapper(reuse=False) >>> for tids in video_trackids: >>> new_tids = [self.remap(old_tid) for old_tid in tids] >>> self.block_seen() >>> print('new_tids = {!r}'.format(new_tids)) new_tids = [0, 0, 1, 1, 2, 3] new_tids = [4, 5, 6, 7, 7, 8, 9, 10]
- remap(old_id)[source]¶
Convert a old-id into a new-id. If self.reuse is True then we will return the same id if it hasn’t been blocked yet.
- class kwcoco._helpers.UniqueNameRemapper[source]¶
Bases:
object
helper to ensure names will be unique by appending suffixes
Example
>>> from kwcoco.coco_dataset import * # NOQA >>> self = UniqueNameRemapper() >>> assert self.remap('foo') == 'foo' >>> assert self.remap('foo') == 'foo_v001' >>> assert self.remap('foo') == 'foo_v002' >>> assert self.remap('foo_v001') == 'foo_v003'
- kwcoco._helpers._lut_frame_index(imgs, gid)¶
- class kwcoco._helpers.SortedSet(iterable=None, key=None)[source]¶
Bases:
SortedSet
Initialize sorted set instance.
Optional iterable argument provides an initial iterable of values to initialize the sorted set.
Optional key argument defines a callable that, like the key argument to Python’s sorted function, extracts a comparison key from each value. The default, none, compares values directly.
Runtime complexity: O(n*log(n))
>>> ss = SortedSet([3, 1, 2, 5, 4]) >>> ss SortedSet([1, 2, 3, 4, 5]) >>> from operator import neg >>> ss = SortedSet([3, 1, 2, 5, 4], neg) >>> ss SortedSet([5, 4, 3, 2, 1], key=<built-in function neg>)
- Parameters
iterable – initial values (optional)
key – function used to extract comparison key (optional)
- _abc_impl = <_abc_data object>¶
kwcoco.abstract_coco_dataset module¶
- class kwcoco.abstract_coco_dataset.AbstractCocoDataset[source]¶
Bases:
ABC
This is a common base for all variants of the Coco Dataset
At the time of writing there is kwcoco.CocoDataset (which is the dictionary-based backend), and the kwcoco.coco_sql_dataset.CocoSqlDataset, which is experimental.
- _abc_impl = <_abc_data object>¶
kwcoco.category_tree module¶
The category_tree
module defines the CategoryTree
class, which
is used for maintaining flat or hierarchical category information. The kwcoco
version of this class only contains the datastructure and does not contain any
torch operations. See the ndsampler version for the extension with torch
operations.
- class kwcoco.category_tree.CategoryTree(graph=None, checks=True)[source]¶
Bases:
NiceRepr
Wrapper that maintains flat or hierarchical category information.
Helps compute softmaxes and probabilities for tree-based categories where a directed edge (A, B) represents that A is a superclass of B.
Note
There are three basic properties that this object maintains:
node: Alphanumeric string names that should be generally descriptive. Using spaces and special characters in these names is discouraged, but can be done. This is the COCO category "name" attribute. For categories this may be denoted as (name, node, cname, catname). id: The integer id of a category should ideally remain consistent. These are often given by a dataset (e.g. a COCO dataset). This is the COCO category "id" attribute. For categories this is often denoted as (id, cid). index: Contigous zero-based indices that indexes the list of categories. These should be used for the fastest access in backend computation tasks. Typically corresponds to the ordering of the channels in the final linear layer in an associated model. For categories this is often denoted as (index, cidx, idx, or cx).
- Variables
idx_to_node (List[str]) – a list of class names. Implicitly maps from index to category name.
id_to_node (Dict[int, str]) – maps integer ids to category names
node_to_idx (Dict[str, int]) – maps category names to indexes
graph (networkx.Graph) – a Graph that stores any hierarchy information. For standard mutually exclusive classes, this graph is edgeless. Nodes in this graph can maintain category attributes / properties.
idx_groups (List[List[int]]) – groups of category indices that share the same parent category.
Example
>>> from kwcoco.category_tree import * >>> graph = nx.from_dict_of_lists({ >>> 'background': [], >>> 'foreground': ['animal'], >>> 'animal': ['mammal', 'fish', 'insect', 'reptile'], >>> 'mammal': ['dog', 'cat', 'human', 'zebra'], >>> 'zebra': ['grevys', 'plains'], >>> 'grevys': ['fred'], >>> 'dog': ['boxer', 'beagle', 'golden'], >>> 'cat': ['maine coon', 'persian', 'sphynx'], >>> 'reptile': ['bearded dragon', 't-rex'], >>> }, nx.DiGraph) >>> self = CategoryTree(graph) >>> print(self) <CategoryTree(nNodes=22, maxDepth=6, maxBreadth=4...)>
Example
>>> # The coerce classmethod is the easiest way to create an instance >>> import kwcoco >>> kwcoco.CategoryTree.coerce(['a', 'b', 'c']) <CategoryTree...nNodes=3, nodes=...'a', 'b', 'c'... >>> kwcoco.CategoryTree.coerce(4) <CategoryTree...nNodes=4, nodes=...'class_1', 'class_2', 'class_3', ... >>> kwcoco.CategoryTree.coerce(4)
- Parameters
graph (nx.DiGraph) – either the graph representing a category hierarchy
checks (bool, default=True) – if false, bypass input checks
- classmethod from_mutex(nodes, bg_hack=True)[source]¶
- Parameters
nodes (List[str]) – or a list of class names (in which case they will all be assumed to be mutually exclusive)
Example
>>> print(CategoryTree.from_mutex(['a', 'b', 'c'])) <CategoryTree(nNodes=3, ...)>
- classmethod from_json(state)[source]¶
- Parameters
state (Dict) – see __getstate__ / __json__ for details
- classmethod from_coco(categories)[source]¶
Create a CategoryTree object from coco categories
- Parameters
List[Dict] – list of coco-style categories
- classmethod coerce(data, **kw)[source]¶
Attempt to coerce data as a CategoryTree object.
This is primarily useful for when the software stack depends on categories being represent
This will work if the input data is a specially formatted json dict, a list of mutually exclusive classes, or if it is already a CategoryTree. Otherwise an error will be thrown.
- Parameters
data (object) – a known representation of a category tree.
**kwargs – input type specific arguments
- Returns
self
- Return type
- Raises
TypeError - if the input format is unknown –
ValueError - if kwargs are not compatible with the input format –
Example
>>> import kwcoco >>> classes1 = kwcoco.CategoryTree.coerce(3) # integer >>> classes2 = kwcoco.CategoryTree.coerce(classes1.__json__()) # graph dict >>> classes3 = kwcoco.CategoryTree.coerce(['class_1', 'class_2', 'class_3']) # mutex list >>> classes4 = kwcoco.CategoryTree.coerce(classes1.graph) # nx Graph >>> classes5 = kwcoco.CategoryTree.coerce(classes1) # cls >>> # xdoctest: +REQUIRES(module:ndsampler) >>> import ndsampler >>> classes6 = ndsampler.CategoryTree.coerce(3) >>> classes7 = ndsampler.CategoryTree.coerce(classes1) >>> classes8 = kwcoco.CategoryTree.coerce(classes6)
- classmethod demo(key='coco', **kwargs)[source]¶
- Parameters
key (str) – specify which demo dataset to use. Can be ‘coco’ (which uses the default coco demo data). Can be ‘btree’ which creates a binary tree and accepts kwargs ‘r’ and ‘h’ for branching-factor and height. Can be ‘btree2’, which is the same as btree but returns strings
CommandLine
xdoctest -m ~/code/kwcoco/kwcoco/category_tree.py CategoryTree.demo
Example
>>> from kwcoco.category_tree import * >>> self = CategoryTree.demo() >>> print('self = {}'.format(self)) self = <CategoryTree(nNodes=10, maxDepth=2, maxBreadth=4...)>
- property id_to_idx¶
Example:
>>> import kwcoco >>> self = kwcoco.CategoryTree.demo() >>> self.id_to_idx[1]
- property idx_to_id¶
Example:
>>> import kwcoco >>> self = kwcoco.CategoryTree.demo() >>> self.idx_to_id[0]
- idx_to_ancestor_idxs(include_self=True)[source]¶
Mapping from a class index to its ancestors
- Parameters
include_self (bool, default=True) – if True includes each node as its own ancestor.
- idx_to_descendants_idxs(include_self=False)[source]¶
Mapping from a class index to its descendants (including itself)
- Parameters
include_self (bool, default=False) – if True includes each node as its own descendant.
- idx_pairwise_distance()[source]¶
Get a matrix encoding the distance from one class to another.
- Distances
from parents to children are positive (descendants),
from children to parents are negative (ancestors),
between unreachable nodes (wrt to forward and reverse graph) are nan.
- is_mutex()[source]¶
Returns True if all categories are mutually exclusive (i.e. flat)
If true, then the classes may be represented as a simple list of class names without any loss of information, otherwise the underlying category graph is necessary to preserve all knowledge.
Todo
[ ] what happens when we have a dummy root?
- property num_classes¶
- property class_names¶
- property category_names¶
- property cats¶
Returns a mapping from category names to category attributes.
If this category tree was constructed from a coco-dataset, then this will contain the coco category attributes.
- Returns
Dict[str, Dict[str, object]]
Example
>>> from kwcoco.category_tree import * >>> self = CategoryTree.demo() >>> print('self.cats = {!r}'.format(self.cats))
- normalize()[source]¶
Applies a normalization scheme to the categories.
Note: this may break other tasks that depend on exact category names.
- Returns
CategoryTree
Example
>>> from kwcoco.category_tree import * # NOQA >>> import kwcoco >>> orig = kwcoco.CategoryTree.demo('animals_v1') >>> self = kwcoco.CategoryTree(nx.relabel_nodes(orig.graph, str.upper)) >>> norm = self.normalize()
kwcoco.channel_spec module¶
The ChannelSpec and FusedChannelSpec represent a set of channels or bands in an
image. This could be as simple as red|green|blue
, or more complex like:
red|green|blue|nir|swir16|swir22
.
This functionality has been moved to “delayed_image”.
kwcoco.coco_dataset module¶
An implementation and extension of the original MS-COCO API [CocoFormat].
Extends the format to also include line annotations.
The following describes psuedo-code for the high level spec (some of which may
not be have full support in the Python API). A formal json-schema is defined in
kwcoco.coco_schema
.
Note
The main object in this file is CocoDataset
, which is composed of
several mixin classes. See the class and method documentation for more
details.
An informal description of the spec given in: coco_schema_informal.rst.
For a formal description of the spec see the coco_schema.json.
Todo
- [ ] Use ijson (modified to support NaN) to lazilly load pieces of the
dataset in the background or on demand. This will give us faster access to categories / images, whereas we will always have to wait for annotations etc…
[X] Should img_root be changed to bundle_dpath?
[ ] Read video data, return numpy arrays (requires API for images)
[ ] Spec for video URI, and convert to frames @ framerate function.
[x] Document channel spec
[x] Document sensor-channel spec
[X] Add remove videos method
- [ ] Efficiency: Make video annotations more efficient by only tracking
keyframes, provide an API to obtain a dense or interpolated annotation on an intermediate frame.
- [ ] Efficiency: Allow each section of the kwcoco file to be written as a
separate json file. Perhaps allow genric pointer support? Might get messy.
[ ] Reroot needs to be redesigned very carefully.
[ ] Allow parts of the kwcoco file to be references to other json files.
[ ] Add top-level track table (in progress)
References
- CocoFormat
- PyCocoToolsMask
https://github.com/nightrome/cocostuffapi/blob/master/PythonAPI/pycocotools/mask.py
- CocoTutorial
https://www.immersivelimit.com/tutorials/create-coco-annotations-from-scratch/#coco-dataset-format
- class kwcoco.coco_dataset.MixinCocoDepricate[source]¶
Bases:
object
These functions are marked for deprication and will be removed
- keypoint_annotation_frequency()[source]¶
DEPRECATED
Example
>>> import kwcoco >>> import ubelt as ub >>> self = kwcoco.CocoDataset.demo('shapes', rng=0) >>> hist = self.keypoint_annotation_frequency() >>> hist = ub.odict(sorted(hist.items())) >>> # FIXME: for whatever reason demodata generation is not determenistic when seeded >>> print(ub.urepr(hist)) # xdoc: +IGNORE_WANT { 'bot_tip': 6, 'left_eye': 14, 'mid_tip': 6, 'right_eye': 14, 'top_tip': 6, }
- class kwcoco.coco_dataset.MixinCocoAccessors[source]¶
Bases:
object
TODO: better name
- delayed_load(gid, channels=None, space='image')[source]¶
Experimental method
- Parameters
gid (int) – image id to load
channels (kwcoco.FusedChannelSpec) – specific channels to load. if unspecified, all channels are loaded.
space (str) – can either be “image” for loading in image space, or “video” for loading in video space.
Todo
- [X] Currently can only take all or none of the channels from each
base-image / auxiliary dict. For instance if the main image is r|g|b you can’t just select g|b at the moment.
- [X] The order of the channels in the delayed load should
match the requested channel order.
[X] TODO: add nans to bands that don’t exist or throw an error
Example
>>> import kwcoco >>> gid = 1 >>> # >>> self = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> delayed = self.delayed_load(gid) >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> # >>> self = kwcoco.CocoDataset.demo('shapes8') >>> delayed = self.delayed_load(gid) >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize()))
>>> crop = delayed.crop((slice(0, 3), slice(0, 3))) >>> crop.finalize()
>>> # TODO: should only select the "red" channel >>> self = kwcoco.CocoDataset.demo('shapes8') >>> delayed = self.delayed_load(gid, channels='r')
>>> import kwcoco >>> gid = 1 >>> # >>> self = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> delayed = self.delayed_load(gid, channels='B1|B2', space='image') >>> print('delayed = {!r}'.format(delayed)) >>> delayed = self.delayed_load(gid, channels='B1|B2|B11', space='image') >>> print('delayed = {!r}'.format(delayed)) >>> delayed = self.delayed_load(gid, channels='B8|B1', space='video') >>> print('delayed = {!r}'.format(delayed))
>>> delayed = self.delayed_load(gid, channels='B8|foo|bar|B1', space='video') >>> print('delayed = {!r}'.format(delayed))
- load_image(gid_or_img, channels=None)[source]¶
Reads an image from disk and
- Parameters
gid_or_img (int | dict) – image id or image dict
channels (str | None) – if specified, load data from auxiliary channels instead
- Returns
the image
- Return type
np.ndarray
Note
Prefer to use the CocoImage methods instead
- get_image_fpath(gid_or_img, channels=None)[source]¶
Returns the full path to the image
- Parameters
gid_or_img (int | dict) – image id or image dict
channels (str | None) – if specified, return a path to data containing auxiliary channels instead
Note
Prefer to use the CocoImage methods instead
- Returns
full path to the image
- Return type
PathLike
- _get_img_auxiliary(gid_or_img, channels)[source]¶
returns the auxiliary dictionary for a specific channel
- get_auxiliary_fpath(gid_or_img, channels)[source]¶
Returns the full path to auxiliary data for an image
- Parameters
gid_or_img (int | dict) – an image or its id
channels (str) – the auxiliary channel to load (e.g. disparity)
Note
Prefer to use the CocoImage methods instead
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('shapes8', aux=True) >>> self.get_auxiliary_fpath(1, 'disparity')
- load_annot_sample(aid_or_ann, image=None, pad=None)[source]¶
Reads the chip of an annotation. Note this is much less efficient than using a sampler, but it doesn’t require disk cache.
Maybe deprecate?
- Parameters
aid_or_int (int | dict) – annot id or dict
image (ArrayLike | None) – preloaded image (note: this process is inefficient unless image is specified)
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> sample = self.load_annot_sample(2, pad=100) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(sample['im']) >>> kwplot.show_if_requested()
- _resolve_to_cid(id_or_name_or_dict)[source]¶
Ensures output is an category id
Note
this does not resolve aliases (yet), for that see _alias_to_cat
Todo
we could maintain an alias index to make this fast
- _resolve_to_kpcat(kp_identifier)[source]¶
Lookup a keypoint-category dict via its name or id
- Parameters
kp_identifier (int | str | dict) – either the keypoint category name, alias, or its keypoint_category_id.
- Returns
keypoint category dictionary
- Return type
Dict
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('shapes') >>> kpcat1 = self._resolve_to_kpcat(1) >>> kpcat2 = self._resolve_to_kpcat('left_eye') >>> assert kpcat1 is kpcat2 >>> import pytest >>> with pytest.raises(KeyError): >>> self._resolve_to_cat('human')
- _resolve_to_cat(cat_identifier)[source]¶
Lookup a coco-category dict via its name, alias, or id.
- Parameters
cat_identifier (int | str | dict) – either the category name, alias, or its category_id.
- Raises
KeyError – if the category doesn’t exist.
Note
If the index is not built, the method will work but may be slow.
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> cat = self._resolve_to_cat('human') >>> import pytest >>> assert self._resolve_to_cat(cat['id']) is cat >>> assert self._resolve_to_cat(cat) is cat >>> with pytest.raises(KeyError): >>> self._resolve_to_cat(32) >>> self.index.clear() >>> assert self._resolve_to_cat(cat['id']) is cat >>> with pytest.raises(KeyError): >>> self._resolve_to_cat(32)
- _alias_to_cat(alias_catname)[source]¶
Lookup a coco-category via its name or an “alias” name. In production code, use
_resolve_to_cat()
instead.- Parameters
alias_catname (str) – category name or alias
- Returns
coco category dictionary
- Return type
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> cat = self._alias_to_cat('human') >>> import pytest >>> with pytest.raises(KeyError): >>> self._alias_to_cat('person') >>> cat['alias'] = ['person'] >>> self._alias_to_cat('person') >>> cat['alias'] = 'person' >>> self._alias_to_cat('person') >>> assert self._alias_to_cat(None) is None
- category_graph()[source]¶
Construct a networkx category hierarchy
- Returns
graph: a directed graph where category names are the nodes, supercategories define edges, and items in each category dict (e.g. category id) are added as node properties.
- Return type
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> graph = self.category_graph() >>> assert 'astronaut' in graph.nodes() >>> assert 'keypoints' in graph.nodes['human']
- object_categories()[source]¶
Construct a consistent CategoryTree representation of object classes
- Returns
category data structure
- Return type
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> classes = self.object_categories() >>> print('classes = {}'.format(classes))
- keypoint_categories()[source]¶
Construct a consistent CategoryTree representation of keypoint classes
- Returns
category data structure
- Return type
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> classes = self.keypoint_categories() >>> print('classes = {}'.format(classes))
- _keypoint_category_names()[source]¶
Construct keypoint categories names.
Uses new-style if possible, otherwise this falls back on old-style.
- Returns
names - list of keypoint category names
- Return type
List[str]
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> names = self._keypoint_category_names() >>> print(names)
- class kwcoco.coco_dataset.MixinCocoExtras[source]¶
Bases:
object
Misc functions for coco
- classmethod coerce(key, sqlview=False, **kw)[source]¶
Attempt to transform the input into the intended CocoDataset.
- Parameters
key – this can either be an instance of a CocoDataset, a string URI pointing to an on-disk dataset, or a special key for creating demodata.
sqlview (bool | str) – If truthy, will return the dataset as a cached sql view, which can be quicker to load and use in some instances. Can be given as a string, which sets the backend that is used: either sqlite or postgresql. Defaults to False.
**kw – passed to whatever constructor is chosen (if any)
- Returns
AbstractCocoDataset | kwcoco.CocoDataset | kwcoco.CocoSqlDatabase
Example
>>> # test coerce for various input methods >>> import kwcoco >>> from kwcoco.coco_sql_dataset import assert_dsets_allclose >>> dct_dset = kwcoco.CocoDataset.coerce('special:shapes8') >>> copy1 = kwcoco.CocoDataset.coerce(dct_dset) >>> copy2 = kwcoco.CocoDataset.coerce(dct_dset.fpath) >>> assert assert_dsets_allclose(dct_dset, copy1) >>> assert assert_dsets_allclose(dct_dset, copy2) >>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> sql_dset = dct_dset.view_sql() >>> copy3 = kwcoco.CocoDataset.coerce(sql_dset) >>> copy4 = kwcoco.CocoDataset.coerce(sql_dset.fpath) >>> assert assert_dsets_allclose(dct_dset, sql_dset) >>> assert assert_dsets_allclose(dct_dset, copy3) >>> assert assert_dsets_allclose(dct_dset, copy4)
- classmethod demo(key='photos', **kwargs)[source]¶
Create a toy coco dataset for testing and demo puposes
- Parameters
key (str) – Either ‘photos’ (default), ‘shapes’, or ‘vidshapes’. There are also special sufixes that can control behavior.
Basic options that define which flavor of demodata to generate are: photos, shapes, and vidshapes. A numeric suffix e.g. vidshapes8 can be specified to indicate the size of the generated demo dataset. There are other special suffixes that are available. See the code in this function for explicit details on what is allowed.
TODO: better documentation for these demo datasets.
As a quick summary: the vidshapes key is the most robust and mature demodata set, and here are several useful variants of the vidshapes key.
vidshapes8 - the 8 suffix is the number of videos in this case.
vidshapes8-multispectral - generate 8 multispectral videos.
vidshapes8-msi - msi is an alias for multispectral.
vidshapes8-frames5 - generate 8 videos with 5 frames each.
vidshapes2-tracks5 - generate 2 videos with 5 tracks each.
(6) vidshapes2-speed0.1-frames7 - generate 2 videos with 7 frames where the objects move with with a speed of 0.1.
**kwargs – if key is shapes, these arguments are passed to toydata generation. The Kwargs section of this docstring documents a subset of the available options. For full details, see
demodata_toy_dset()
andrandom_video_dset()
.
- Kwargs:
image_size (Tuple[int, int]): width / height size of the images
- dpath (str | PathLike):
path to the directory where any generated demo bundles will be written to. Defaults to using kwcoco cache dir.
aux (bool): if True generates dummy auxiliary channels
- rng (int | RandomState | None):
random number generator or seed
verbose (int): verbosity mode. Defaults to 3.
Example
>>> # Basic demodata keys >>> print(CocoDataset.demo('photos', verbose=1)) >>> print(CocoDataset.demo('shapes', verbose=1)) >>> print(CocoDataset.demo('vidshapes', verbose=1)) >>> # Varaints of demodata keys >>> print(CocoDataset.demo('shapes8', verbose=0)) >>> print(CocoDataset.demo('shapes8-msi', verbose=0)) >>> print(CocoDataset.demo('shapes8-frames1-speed0.2-msi', verbose=0))
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes5', num_frames=5, >>> verbose=0, rng=None) >>> dset = kwcoco.CocoDataset.demo('vidshapes5', num_frames=5, >>> num_tracks=4, verbose=0, rng=44) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> pnums = kwplot.PlotNums(nSubplots=len(dset.index.imgs)) >>> fnum = 1 >>> for gx, gid in enumerate(dset.index.imgs.keys()): >>> canvas = dset.draw_image(gid=gid) >>> kwplot.imshow(canvas, pnum=pnums[gx], fnum=fnum) >>> #dset.show_image(gid=gid, pnum=pnums[gx]) >>> kwplot.show_if_requested()
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes5-aux', num_frames=1, >>> verbose=0, rng=None)
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes1-multispectral', num_frames=5, >>> verbose=0, rng=None) >>> # This is the first use-case of image names >>> assert len(dset.index.file_name_to_img) == 0, ( >>> 'the multispectral demo case has no "base" image') >>> assert len(dset.index.name_to_img) == len(dset.index.imgs) == 5 >>> dset.remove_images([1]) >>> assert len(dset.index.name_to_img) == len(dset.index.imgs) == 4 >>> dset.remove_videos([1]) >>> assert len(dset.index.name_to_img) == len(dset.index.imgs) == 0
- classmethod random(rng=None)[source]¶
Creates a random CocoDataset according to distribution parameters
Todo
[ ] parametarize
- _build_hashid(hash_pixels=False, verbose=0)[source]¶
Construct a hash that uniquely identifies the state of this dataset.
- Parameters
hash_pixels (bool) – If False the image data is not included in the hash, which can speed up computation, but is not 100% robust. Defaults to False.
verbose (int) – verbosity level
- Returns
the hashid
- Return type
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> self._build_hashid(hash_pixels=True, verbose=3) ... >>> # Shorten hashes for readability >>> import ubelt as ub >>> walker = ub.IndexableWalker(self.hashid_parts) >>> for path, val in walker: >>> if isinstance(val, str): >>> walker[path] = val[0:8] >>> # Note: this may change in different versions of kwcoco >>> print('self.hashid_parts = ' + ub.urepr(self.hashid_parts)) >>> print('self.hashid = {!r}'.format(self.hashid[0:8])) self.hashid_parts = { 'annotations': { 'json': 'c1d1b9c3', 'num': 11, }, 'images': { 'pixels': '88e37cc3', 'json': '9b8e8be3', 'num': 3, }, 'categories': { 'json': '82d22e00', 'num': 8, }, } self.hashid = 'bf69bf15'
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> self._build_hashid(hash_pixels=True, verbose=3) >>> self.hashid_parts >>> # Test that when we modify the dataset only the relevant >>> # hashid parts are recomputed. >>> orig = self.hashid_parts['categories']['json'] >>> self.add_category('foobar') >>> assert 'categories' not in self.hashid_parts >>> self.hashid_parts >>> self.hashid_parts['images']['json'] = 'should not change' >>> self._build_hashid(hash_pixels=True, verbose=3) >>> assert self.hashid_parts['categories']['json'] >>> assert self.hashid_parts['categories']['json'] != orig >>> assert self.hashid_parts['images']['json'] == 'should not change'
- _invalidate_hashid(parts=None)[source]¶
Called whenever the coco dataset is modified. It is possible to specify which parts were modified so unmodified parts can be reused next time the hash is constructed.
Todo
[ ] Rename to _notify_modification — or something like that
- _cached_hashid()[source]¶
Under Construction.
The idea is to cache the hashid when we are sure that the dataset was loaded from a file and has not been modified. We can record the modification time of the file (because we know it hasn’t changed in memory), and use that as a key to the cache. If the modification time on the file is different than the one recorded in the cache, we know the cache could be invalid, so we recompute the hashid.
- classmethod _cached_hashid_for(fpath)[source]¶
Lookup the cached hashid for a kwcoco json file if it exists.
- _dataset_id()[source]¶
A human interpretable name that can be used to uniquely identify the dataset.
Note
This function is currently subject to change.
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> print(self._dataset_id()) >>> self = kwcoco.CocoDataset.demo('vidshapes8') >>> print(self._dataset_id()) >>> self = kwcoco.CocoDataset() >>> print(self._dataset_id())
- _ensure_imgsize(workers=0, verbose=1, fail=False)[source]¶
Populate the imgsize field if it does not exist.
- Parameters
workers (int) – number of workers for parallel processing.
verbose (int) – verbosity level
fail (bool) – if True, raises an exception if anything size fails to load.
- Returns
- a list of “bad” image dictionaries where the size could
not be determined. Typically these are corrupted images and should be removed.
- Return type
List[dict]
Example
>>> # Normal case >>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> bad_imgs = self._ensure_imgsize() >>> assert len(bad_imgs) == 0 >>> assert self.imgs[1]['width'] == 512 >>> assert self.imgs[2]['width'] == 328 >>> assert self.imgs[3]['width'] == 256
>>> # Fail cases >>> self = kwcoco.CocoDataset() >>> self.add_image('does-not-exist.jpg') >>> bad_imgs = self._ensure_imgsize() >>> assert len(bad_imgs) == 1 >>> import pytest >>> with pytest.raises(Exception): >>> self._ensure_imgsize(fail=True)
- _ensure_image_data(gids=None, verbose=1)[source]¶
Download data from “url” fields if specified.
- Parameters
gids (List) – subset of images to download
- corrupted_images(check_aux=True, verbose=0, workers=0)[source]¶
Check for images that don’t exist or can’t be opened
- rename_categories(mapper, rebuild=True, merge_policy='ignore')[source]¶
Rename categories with a potentially coarser categorization.
- Parameters
mapper (dict | Callable) – maps old names to new names. If multiple names are mapped to the same category, those categories will be merged.
merge_policy (str) – How to handle multiple categories that map to the same name. Can be update or ignore.
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> self.rename_categories({'astronomer': 'person', >>> 'astronaut': 'person', >>> 'mouth': 'person', >>> 'helmet': 'hat'}) >>> assert 'hat' in self.name_to_cat >>> assert 'helmet' not in self.name_to_cat >>> # Test merge case >>> self = kwcoco.CocoDataset.demo() >>> mapper = { >>> 'helmet': 'rocket', >>> 'astronomer': 'rocket', >>> 'human': 'rocket', >>> 'mouth': 'helmet', >>> 'star': 'gas' >>> } >>> self.rename_categories(mapper)
- _aspycoco()[source]¶
Converts to the official pycocotools.coco.COCO object
Todo
[ ] Maybe expose as a public API?
- reroot(new_root=None, old_prefix=None, new_prefix=None, absolute=False, check=True, safe=True, verbose=1)[source]¶
Modify the prefix of the image/data paths onto a new image/data root.
- Parameters
new_root (str | PathLike | None) – New image root. If unspecified the current
self.bundle_dpath
is used. If old_prefix and new_prefix are unspecified, they will attempt to be determined based on the current root (which assumes the file paths exist at that root) and this new root. Defaults to None.old_prefix (str | None) – If specified, removes this prefix from file names. This also prevents any inferences that might be made via “new_root”. Defaults to None.
new_prefix (str | None) – If specified, adds this prefix to the file names. This also prevents any inferences that might be made via “new_root”. Defaults to None.
absolute (bool) – if True, file names are stored as absolute paths, otherwise they are relative to the new image root. Defaults to False.
check (bool) – if True, checks that the images all exist. Defaults to True.
safe (bool) – if True, does not overwrite values until all checks pass. Defaults to True.
verbose (int) – verbosity level, default=0.
CommandLine
xdoctest -m kwcoco.coco_dataset MixinCocoExtras.reroot
Todo
[ ] Incorporate maximum ordered subtree embedding?
Example
>>> # xdoctest: +REQUIRES(module:rich) >>> import kwcoco >>> import ubelt as ub >>> import rich >>> def report(dset): >>> gid = 1 >>> abs_fpath = ub.Path(dset.get_image_fpath(gid)) >>> rel_fpath = dset.index.imgs[gid]['file_name'] >>> color = 'green' if abs_fpath.exists() else 'red' >>> print(ub.color_text(f'abs_fpath = {abs_fpath!r}', color)) >>> print(f'rel_fpath = {rel_fpath!r}') >>> dset = self = kwcoco.CocoDataset.demo() >>> # Change base relative directory >>> bundle_dpath = ub.expandpath('~') >>> rich.print('ORIG self.imgs = {}'.format(ub.urepr(self.imgs, nl=1))) >>> rich.print('ORIG dset.bundle_dpath = {!r}'.format(dset.bundle_dpath)) >>> rich.print('NEW(1) bundle_dpath = {!r}'.format(bundle_dpath)) >>> # Test relative reroot >>> rich.print('[blue] --- 1. RELATIVE REROOT ---') >>> self.reroot(bundle_dpath, verbose=3) >>> report(self) >>> rich.print('NEW(1) self.imgs = {}'.format(ub.urepr(self.imgs, nl=1))) >>> if not ub.WIN32: >>> assert self.imgs[1]['file_name'].startswith('.cache') >>> # Test absolute reroot >>> rich.print('[blue] --- 2. ABSOLUTE REROOT ---') >>> self.reroot(absolute=True, verbose=3) >>> rich.print('NEW(2) self.imgs = {}'.format(ub.urepr(self.imgs, nl=1))) >>> assert self.imgs[1]['file_name'].startswith(bundle_dpath)
>>> # Switch back to relative paths >>> rich.print('[blue] --- 3. ABS->REL REROOT ---') >>> self.reroot() >>> rich.print('NEW(3) self.imgs = {}'.format(ub.urepr(self.imgs, nl=1))) >>> if not ub.WIN32: >>> assert self.imgs[1]['file_name'].startswith('.cache')
Example
>>> # demo with auxiliary data >>> import kwcoco >>> self = kwcoco.CocoDataset.demo('shapes8', aux=True) >>> bundle_dpath = ub.expandpath('~') >>> print(self.imgs[1]['file_name']) >>> print(self.imgs[1]['auxiliary'][0]['file_name']) >>> self.reroot(new_root=bundle_dpath) >>> print(self.imgs[1]['file_name']) >>> print(self.imgs[1]['auxiliary'][0]['file_name']) >>> if not ub.WIN32: >>> assert self.imgs[1]['file_name'].startswith('.cache') >>> assert self.imgs[1]['auxiliary'][0]['file_name'].startswith('.cache')
- property data_root¶
In the future we will deprecate data_root for bundle_dpath
- property img_root¶
In the future we will deprecate img_root for bundle_dpath
- property data_fpath¶
data_fpath is an alias of fpath
- class kwcoco.coco_dataset.MixinCocoObjects[source]¶
Bases:
object
Expose methods to construct object lists / groups.
This is an alternative vectorized ORM-like interface to the coco dataset
- annots(annot_ids=None, image_id=None, track_id=None, trackid=None, aids=None, gid=None)[source]¶
Return vectorized annotation objects
- Parameters
annot_ids (List[int] | None) – annotation ids to reference, if unspecified all annotations are returned. An alias is “aids”, which may be removed in the future.
image_id (int | None) – return all annotations that belong to this image id. Mutually exclusive with other arguments. An alias is “gids”, which may be removed in the future.
track_id (int | None) – return all annotations that belong to this track. mutually exclusive with other arguments. An alias is “trackid”, which may be removed in the future.
- Returns
vectorized annotation object
- Return type
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> annots = self.annots() >>> print(annots) <Annots(num=11)> >>> sub_annots = annots.take([1, 2, 3]) >>> print(sub_annots) <Annots(num=3)> >>> print(ub.urepr(sub_annots.get('bbox', None))) [ [350, 5, 130, 290], None, None, ]
- images(image_ids=None, video_id=None, names=None, gids=None, vidid=None)[source]¶
Return vectorized image objects
- Parameters
image_ids (List[int] | None) – image ids to reference, if unspecified all images are returned. An alias is gids.
video_id (int | None) – returns all images that belong to this video id. mutually exclusive with image_ids arg.
names (List[str] | None) – lookup images by their names.
- Returns
vectorized image object
- Return type
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> images = self.images() >>> print(images) <Images(num=3)>
>>> self = kwcoco.CocoDataset.demo('vidshapes2') >>> video_id = 1 >>> images = self.images(video_id=video_id) >>> assert all(v == video_id for v in images.lookup('video_id')) >>> print(images) <Images(num=2)>
- categories(category_ids=None, cids=None)[source]¶
Return vectorized category objects
- Parameters
category_ids (List[int] | None) – category ids to reference, if unspecified all categories are returned. The cids argument is an alias.
- Returns
vectorized category object
- Return type
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> categories = self.categories() >>> print(categories) <Categories(num=8)>
- videos(video_ids=None, names=None, vidids=None)[source]¶
Return vectorized video objects
- Parameters
video_ids (List[int] | None) – video ids to reference, if unspecified all videos are returned. The vidids argument is an alias. Mutually exclusive with other args.
names (List[str] | None) – lookup videos by their name. Mutually exclusive with other args.
- Returns
vectorized video object
- Return type
Todo
- [ ] This conflicts with what should be the property that
should redirect to
index.videos
, we should resolve this somehow. E.g. all other main members of the index (anns, imgs, cats) have a toplevel dataset property, we don’t have one for videos because the name we would pick conflicts with this.
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('vidshapes2') >>> videos = self.videos() >>> print(videos) >>> videos.lookup('name') >>> videos.lookup('id') >>> print('videos.objs = {}'.format(ub.urepr(videos.objs[0:2], nl=1)))
- class kwcoco.coco_dataset.MixinCocoStats[source]¶
Bases:
object
Methods for getting stats about the dataset
- property n_annots¶
The number of annotations in the dataset
- property n_images¶
The number of images in the dataset
- property n_cats¶
The number of categories in the dataset
- property n_videos¶
The number of videos in the dataset
- category_annotation_frequency()[source]¶
Reports the number of annotations of each category
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> hist = self.category_annotation_frequency() >>> print(ub.urepr(hist)) { 'astroturf': 0, 'human': 0, 'astronaut': 1, 'astronomer': 1, 'helmet': 1, 'rocket': 1, 'mouth': 2, 'star': 5, }
- conform(**config)[source]¶
Make the COCO file conform a stricter spec, infers attibutes where possible.
Corresponds to the
kwcoco conform
CLI tool.- KWArgs:
**config :
pycocotools_info (default=True): returns info required by pycocotools
ensure_imgsize (default=True): ensure image size is populated
mmlab (default=False): if True tries to convert data to be compatible with open-mmlab tooling.
legacy (default=False): if True tries to convert data structures to items compatible with the original pycocotools spec
workers (int): number of parallel jobs for IO tasks
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('shapes8') >>> dset.index.imgs[1].pop('width') >>> dset.conform(legacy=True) >>> assert 'width' in dset.index.imgs[1] >>> assert 'area' in dset.index.anns[1]
- validate(**config)[source]¶
Performs checks on this coco dataset.
Corresponds to the
kwcoco validate
CLI tool.- Parameters
**config – schema (default=True): if True, validate the json-schema
unique (default=True): if True, validate unique secondary keys
missing (default=True): if True, validate registered files exist
corrupted (default=False): if True, validate data in registered files
channels (default=True): if True, validate that channels in auxiliary/asset items are all unique.
require_relative (default=False): if True, causes validation to fail if paths are non-portable, i.e. all paths must be relative to the bundle directory. if>0, paths must be relative to bundle root. if>1, paths must be inside bundle root.
img_attrs (default=’warn’): if truthy, check that image attributes contain width and height entries. If ‘warn’, then warn if they do not exist. If ‘error’, then fail.
verbose (default=1): verbosity flag
workers (int): number of workers for parallel checks. defaults to 0
fastfail (default=False): if True raise errors immediately
- Returns
- result containing keys -
status (bool): False if any errors occurred errors (List[str]): list of all error messages missing (List): List of any missing images corrupted (List): List of any corrupted images
- Return type
- SeeAlso:
_check_integrity()
- performs internal checks
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> import pytest >>> with pytest.warns(UserWarning): >>> result = self.validate() >>> assert not result['errors'] >>> assert result['warnings']
- stats(**kwargs)[source]¶
Compute summary statistics to describe the dataset at a high level
This function corresponds to
kwcoco.cli.coco_stats
.- KWargs:
basic(bool): return basic stats’, default=True extended(bool): return extended stats’, default=True catfreq(bool): return category frequency stats’, default=True boxes(bool): return bounding box stats’, default=False
annot_attrs(bool): return annotation attribute information’, default=True image_attrs(bool): return image attribute information’, default=True
- Returns
info
- Return type
- basic_stats()[source]¶
Reports number of images, annotations, and categories.
- SeeAlso:
kwcoco.coco_dataset.MixinCocoStats.basic_stats()
kwcoco.coco_dataset.MixinCocoStats.extended_stats()
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> print(ub.urepr(self.basic_stats())) { 'n_anns': 11, 'n_imgs': 3, 'n_videos': 0, 'n_cats': 8, }
>>> from kwcoco.demo.toydata_video import random_video_dset >>> dset = random_video_dset(render=True, num_frames=2, num_tracks=10, rng=0) >>> print(ub.urepr(dset.basic_stats())) { 'n_anns': 20, 'n_imgs': 2, 'n_videos': 1, 'n_cats': 3, }
- extended_stats()[source]¶
Reports number of images, annotations, and categories.
- SeeAlso:
kwcoco.coco_dataset.MixinCocoStats.basic_stats()
kwcoco.coco_dataset.MixinCocoStats.extended_stats()
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> print(ub.urepr(self.extended_stats()))
- boxsize_stats(anchors=None, perclass=True, gids=None, aids=None, verbose=0, clusterkw={}, statskw={})[source]¶
Compute statistics about bounding box sizes.
Also computes anchor boxes using kmeans if
anchors
is specified.- Parameters
anchors (int | None) – if specified also computes box anchors via KMeans clustering
perclass (bool) – if True also computes stats for each category
gids (List[int] | None) – if specified only compute stats for these image ids. Defaults to None.
aids (List[int] | None) – if specified only compute stats for these annotation ids. Defaults to None.
verbose (int) – verbosity level
clusterkw (dict) – kwargs for
sklearn.cluster.KMeans
used if computing anchors.statskw (dict) – kwargs for
kwarray.stats_dict()
- Returns
Stats are returned in width-height format.
- Return type
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('shapes32') >>> infos = self.boxsize_stats(anchors=4, perclass=False) >>> print(ub.urepr(infos, nl=-1, precision=2))
>>> infos = self.boxsize_stats(gids=[1], statskw=dict(median=True)) >>> print(ub.urepr(infos, nl=-1, precision=2))
- find_representative_images(gids=None)[source]¶
Find images that have a wide array of categories.
Attempt to find the fewest images that cover all categories using images that contain both a large and small number of annotations.
- Parameters
gids (None | List) – Subset of image ids to consider when finding representative images. Uses all images if unspecified.
- Returns
list of image ids determined to be representative
- Return type
List
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> gids = self.find_representative_images() >>> print('gids = {!r}'.format(gids)) >>> gids = self.find_representative_images([3]) >>> print('gids = {!r}'.format(gids))
>>> self = kwcoco.CocoDataset.demo('shapes8') >>> gids = self.find_representative_images() >>> print('gids = {!r}'.format(gids)) >>> valid = {7, 1} >>> gids = self.find_representative_images(valid) >>> assert valid.issuperset(gids) >>> print('gids = {!r}'.format(gids))
- class kwcoco.coco_dataset.MixinCocoDraw[source]¶
Bases:
object
Matplotlib / display functionality
- draw_image(gid, channels=None)[source]¶
Use kwimage to draw all annotations on an image and return the pixels as a numpy array.
- Parameters
gid (int) – image id to draw
channels (kwcoco.ChannelSpec) – the channel to draw on
- Returns
canvas
- Return type
ndarray
- SeeAlso
kwcoco.coco_dataset.MixinCocoDraw.draw_image()
kwcoco.coco_dataset.MixinCocoDraw.show_image()
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('shapes8') >>> self.draw_image(1) >>> # Now you can dump the annotated image to disk / whatever >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(canvas)
- show_image(gid=None, aids=None, aid=None, channels=None, setlim=None, **kwargs)[source]¶
Use matplotlib to show an image with annotations overlaid
- Parameters
gid (int | None) – image id to show
aids (list | None) – aids to highlight within the image
aid (int | None) – a specific aid to focus on. If gid is not give, look up gid based on this aid.
setlim (None | str) – if ‘image’ sets the limit to the image extent
**kwargs – show_annots, show_aid, show_catname, show_kpname, show_segmentation, title, show_gid, show_filename, show_boxes,
- SeeAlso
kwcoco.coco_dataset.MixinCocoDraw.draw_image()
kwcoco.coco_dataset.MixinCocoDraw.show_image()
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-msi') >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> # xdoctest: -REQUIRES(--show) >>> dset.show_image(gid=1, channels='B8') >>> # xdoctest: +REQUIRES(--show) >>> kwplot.show_if_requested()
- class kwcoco.coco_dataset.MixinCocoAddRemove[source]¶
Bases:
object
Mixin functions to dynamically add / remove annotations images and categories while maintaining lookup indexes.
- add_video(name, id=None, **kw)[source]¶
Register a new video with the dataset
- Parameters
name (str) – Unique name for this video.
id (None | int) – ADVANCED. Force using this image id.
**kw – stores arbitrary key/value pairs in this new video
- Returns
the video id assigned to the new video
- Return type
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset() >>> print('self.index.videos = {}'.format(ub.urepr(self.index.videos, nl=1))) >>> print('self.index.imgs = {}'.format(ub.urepr(self.index.imgs, nl=1))) >>> print('self.index.vidid_to_gids = {!r}'.format(self.index.vidid_to_gids))
>>> vidid1 = self.add_video('foo', id=3) >>> vidid2 = self.add_video('bar') >>> vidid3 = self.add_video('baz') >>> print('self.index.videos = {}'.format(ub.urepr(self.index.videos, nl=1))) >>> print('self.index.imgs = {}'.format(ub.urepr(self.index.imgs, nl=1))) >>> print('self.index.vidid_to_gids = {!r}'.format(self.index.vidid_to_gids))
>>> gid1 = self.add_image('foo1.jpg', video_id=vidid1, frame_index=0) >>> gid2 = self.add_image('foo2.jpg', video_id=vidid1, frame_index=1) >>> gid3 = self.add_image('foo3.jpg', video_id=vidid1, frame_index=2) >>> gid4 = self.add_image('bar1.jpg', video_id=vidid2, frame_index=0) >>> print('self.index.videos = {}'.format(ub.urepr(self.index.videos, nl=1))) >>> print('self.index.imgs = {}'.format(ub.urepr(self.index.imgs, nl=1))) >>> print('self.index.vidid_to_gids = {!r}'.format(self.index.vidid_to_gids))
>>> self.remove_images([gid2]) >>> print('self.index.vidid_to_gids = {!r}'.format(self.index.vidid_to_gids))
- add_image(file_name=None, id=None, **kw)[source]¶
Register a new image with the dataset
- Parameters
file_name (str | None) – relative or absolute path to image. if not given, then “name” must be specified and we will expect that “auxiliary” assets are eventually added.
id (None | int) – ADVANCED. Force using this image id.
name (str) – a unique key to identify this image
width (int) – base width of the image
height (int) – base height of the image
channels (ChannelSpec) – specification of base channels. Only relevant if file_name is given.
auxiliary (List[Dict]) – specification of auxiliary assets. See
CocoImage.add_asset()
for detailsvideo_id (int) – id of parent video, if applicable
frame_index (int) – frame index in parent video
timestamp (number | str) – timestamp of frame index
warp_img_to_vid (Dict) – this transform is used to align the image to a video if it belongs to one.
**kw – stores arbitrary key/value pairs in this new image
- Returns
the image id assigned to the new image
- Return type
- SeeAlso:
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> import kwimage >>> gname = kwimage.grab_test_image_fpath('paraview') >>> gid = self.add_image(gname) >>> assert self.imgs[gid]['file_name'] == gname
- add_auxiliary_item(gid, file_name=None, channels=None, **kwargs)[source]¶
Adds an auxiliary / asset item to the image dictionary.
- Parameters
gid (int) – The image id to add the auxiliary/asset item to.
file_name (str | None) – The name of the file relative to the bundle directory. If unspecified, imdata must be given.
channels (str | kwcoco.FusedChannelSpec) – The channel code indicating what each of the bands represents. These channels should be disjoint wrt to the existing data in this image (this is not checked).
**kwargs – See
CocoImage.add_auxiliary_item()
for more details
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset() >>> gid = dset.add_image(name='my_image_name', width=200, height=200) >>> dset.add_auxiliary_item(gid, 'path/fake_B0.tif', channels='B0', >>> width=200, height=200, >>> warp_aux_to_img={'scale': 1.0})
- add_annotation(image_id, category_id=None, bbox=NoParam, segmentation=NoParam, keypoints=NoParam, id=None, **kw)[source]¶
Register a new annotation with the dataset
- Parameters
image_id (int) – image_id the annotation is added to.
category_id (int | None) – category_id for the new annotation
bbox (list | kwimage.Boxes) – bounding box in xywh format
segmentation (Dict | List | Any) – keypoints in some accepted format, see
kwimage.Mask.to_coco()
andkwimage.MultiPolygon.to_coco()
. Extended types: MaskLike | MultiPolygonLike.keypoints (Any) – keypoints in some accepted format, see
kwimage.Keypoints.to_coco()
. Extended types: KeypointsLike.id (None | int) – Force using this annotation id. Typically you should NOT specify this. A new unused id will be chosen and returned.
**kw – stores arbitrary key/value pairs in this new image, Common respected key/values include but are not limited to the following: track_id (int | str): some value used to associate annotations that belong to the same “track”. score : float prob : List[float] weight (float): a weight, usually used to indicate if a ground truth annotation is difficult / important. This generalizes standard “is_hard” or “ignore” attributes in other formats. caption (str): a text caption for this annotation
- Returns
the annotation id assigned to the new annotation
- Return type
- SeeAlso:
kwcoco.coco_dataset.MixinCocoAddRemove.add_annotation()
kwcoco.coco_dataset.MixinCocoAddRemove.add_annotations()
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> image_id = 1 >>> cid = 1 >>> bbox = [10, 10, 20, 20] >>> aid = self.add_annotation(image_id, cid, bbox) >>> assert self.anns[aid]['bbox'] == bbox
Example
>>> import kwimage >>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> new_det = kwimage.Detections.random(1, segmentations=True, keypoints=True) >>> # kwimage datastructures have methods to convert to coco recognized formats >>> new_ann_data = list(new_det.to_coco(style='new'))[0] >>> image_id = 1 >>> aid = self.add_annotation(image_id, **new_ann_data) >>> # Lookup the annotation we just added >>> ann = self.index.anns[aid] >>> print('ann = {}'.format(ub.urepr(ann, nl=-2)))
Example
>>> # Attempt to add annot without a category or bbox >>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> image_id = 1 >>> aid = self.add_annotation(image_id) >>> assert None in self.index.cid_to_aids
Example
>>> # Attempt to add annot using various styles of kwimage structures >>> import kwcoco >>> import kwimage >>> self = kwcoco.CocoDataset.demo() >>> image_id = 1 >>> #-- >>> kw = {} >>> kw['segmentation'] = kwimage.Polygon.random() >>> kw['keypoints'] = kwimage.Points.random() >>> aid = self.add_annotation(image_id, **kw) >>> ann = self.index.anns[aid] >>> print('ann = {}'.format(ub.urepr(ann, nl=2))) >>> #-- >>> kw = {} >>> kw['segmentation'] = kwimage.Mask.random() >>> aid = self.add_annotation(image_id, **kw) >>> ann = self.index.anns[aid] >>> assert ann.get('segmentation', None) is not None >>> print('ann = {}'.format(ub.urepr(ann, nl=2))) >>> #-- >>> kw = {} >>> kw['segmentation'] = kwimage.Mask.random().to_array_rle() >>> aid = self.add_annotation(image_id, **kw) >>> ann = self.index.anns[aid] >>> assert ann.get('segmentation', None) is not None >>> print('ann = {}'.format(ub.urepr(ann, nl=2))) >>> #-- >>> kw = {} >>> kw['segmentation'] = kwimage.Polygon.random().to_coco() >>> kw['keypoints'] = kwimage.Points.random().to_coco() >>> aid = self.add_annotation(image_id, **kw) >>> ann = self.index.anns[aid] >>> assert ann.get('segmentation', None) is not None >>> assert ann.get('keypoints', None) is not None >>> print('ann = {}'.format(ub.urepr(ann, nl=2)))
- add_category(name, supercategory=None, id=None, **kw)[source]¶
Register a new category with the dataset
- Parameters
name (str) – name of the new category
supercategory (str | None) – parent of this category
id (int | None) – use this category id, if it was not taken
**kw – stores arbitrary key/value pairs in this new image
- Returns
the category id assigned to the new category
- Return type
- SeeAlso:
kwcoco.coco_dataset.MixinCocoAddRemove.add_category()
kwcoco.coco_dataset.MixinCocoAddRemove.ensure_category()
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> prev_n_cats = self.n_cats >>> cid = self.add_category('dog', supercategory='object') >>> assert self.cats[cid]['name'] == 'dog' >>> assert self.n_cats == prev_n_cats + 1 >>> import pytest >>> with pytest.raises(ValueError): >>> self.add_category('dog', supercategory='object')
- ensure_image(file_name, id=None, **kw)[source]¶
Register an image if it is new or returns an existing id.
Like
kwcoco.coco_dataset.MixinCocoAddRemove.add_image()
, but returns the existing image id if it already exists instead of failing. In this case all metadata is ignored.- Parameters
file_name (str) – relative or absolute path to image
id (None | int) – ADVANCED. Force using this image id.
**kw – stores arbitrary key/value pairs in this new image
- Returns
the existing or new image id
- Return type
- ensure_category(name, supercategory=None, id=None, **kw)[source]¶
Register a category if it is new or returns an existing id.
Like
kwcoco.coco_dataset.MixinCocoAddRemove.add_category()
, but returns the existing category id if it already exists instead of failing. In this case all metadata is ignored.- Returns
the existing or new category id
- Return type
- add_annotations(anns)[source]¶
Faster less-safe multi-item alternative to add_annotation.
We assume the annotations are well formatted in kwcoco compliant dictionaries, including the “id” field. No validation checks are made when calling this function.
- Parameters
anns (List[Dict]) – list of annotation dictionaries
- SeeAlso:
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> anns = [self.anns[aid] for aid in [2, 3, 5, 7]] >>> self.remove_annotations(anns) >>> assert self.n_annots == 7 and self._check_index() >>> self.add_annotations(anns) >>> assert self.n_annots == 11 and self._check_index()
- add_images(imgs)[source]¶
Faster less-safe multi-item alternative
We assume the images are well formatted in kwcoco compliant dictionaries, including the “id” field. No validation checks are made when calling this function.
Note
THIS FUNCTION WAS DESIGNED FOR SPEED, AS SUCH IT DOES NOT CHECK IF THE IMAGE-IDs or FILE_NAMES ARE DUPLICATED AND WILL BLINDLY ADD DATA EVEN IF IT IS BAD. THE SINGLE IMAGE VERSION IS SLOWER BUT SAFER.
- Parameters
imgs (List[Dict]) – list of image dictionaries
- SeeAlso:
kwcoco.coco_dataset.MixinCocoAddRemove.add_image()
kwcoco.coco_dataset.MixinCocoAddRemove.add_images()
kwcoco.coco_dataset.MixinCocoAddRemove.ensure_image()
Example
>>> import kwcoco >>> imgs = kwcoco.CocoDataset.demo().dataset['images'] >>> self = kwcoco.CocoDataset() >>> self.add_images(imgs) >>> assert self.n_images == 3 and self._check_index()
- clear_images()[source]¶
Removes all images and annotations (but not categories)
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> self.clear_images() >>> print(ub.urepr(self.basic_stats(), nobr=1, nl=0, si=1)) n_anns: 0, n_imgs: 0, n_videos: 0, n_cats: 8
- clear_annotations()[source]¶
Removes all annotations (but not images and categories)
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> self.clear_annotations() >>> print(ub.urepr(self.basic_stats(), nobr=1, nl=0, si=1)) n_anns: 0, n_imgs: 3, n_videos: 0, n_cats: 8
- remove_annotation(aid_or_ann)[source]¶
Remove a single annotation from the dataset
If you have multiple annotations to remove its more efficient to remove them in batch with
kwcoco.coco_dataset.MixinCocoAddRemove.remove_annotations()
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> aids_or_anns = [self.anns[2], 3, 4, self.anns[1]] >>> self.remove_annotations(aids_or_anns) >>> assert len(self.dataset['annotations']) == 7 >>> self._check_index()
- remove_annotations(aids_or_anns, verbose=0, safe=True)[source]¶
Remove multiple annotations from the dataset.
- Parameters
anns_or_aids (List) – list of annotation dicts or ids
safe (bool) – if True, we perform checks to remove duplicates and non-existing identifiers. Defaults to True.
- Returns
num_removed: information on the number of items removed
- Return type
Dict
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> prev_n_annots = self.n_annots >>> aids_or_anns = [self.anns[2], 3, 4, self.anns[1]] >>> self.remove_annotations(aids_or_anns) # xdoc: +IGNORE_WANT {'annotations': 4} >>> assert len(self.dataset['annotations']) == prev_n_annots - 4 >>> self._check_index()
- remove_categories(cat_identifiers, keep_annots=False, verbose=0, safe=True)[source]¶
Remove categories and all annotations in those categories.
Currently does not change any hierarchy information
- Parameters
cat_identifiers (List) – list of category dicts, names, or ids
keep_annots (bool) – if True, keeps annotations, but removes category labels. Defaults to False.
safe (bool) – if True, we perform checks to remove duplicates and non-existing identifiers. Defaults to True.
- Returns
num_removed: information on the number of items removed
- Return type
Dict
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> cat_identifiers = [self.cats[1], 'rocket', 3] >>> self.remove_categories(cat_identifiers) >>> assert len(self.dataset['categories']) == 5 >>> self._check_index()
- remove_images(gids_or_imgs, verbose=0, safe=True)[source]¶
Remove images and any annotations contained by them
- Parameters
gids_or_imgs (List) – list of image dicts, names, or ids
safe (bool) – if True, we perform checks to remove duplicates and non-existing identifiers.
- Returns
num_removed: information on the number of items removed
- Return type
Dict
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> assert len(self.dataset['images']) == 3 >>> gids_or_imgs = [self.imgs[2], 'astro.png'] >>> self.remove_images(gids_or_imgs) # xdoc: +IGNORE_WANT {'annotations': 11, 'images': 2} >>> assert len(self.dataset['images']) == 1 >>> self._check_index() >>> gids_or_imgs = [3] >>> self.remove_images(gids_or_imgs) >>> assert len(self.dataset['images']) == 0 >>> self._check_index()
- remove_videos(vidids_or_videos, verbose=0, safe=True)[source]¶
Remove videos and any images / annotations contained by them
- Parameters
vidids_or_videos (List) – list of video dicts, names, or ids
safe (bool) – if True, we perform checks to remove duplicates and non-existing identifiers.
- Returns
num_removed: information on the number of items removed
- Return type
Dict
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('vidshapes8') >>> assert len(self.dataset['videos']) == 8 >>> vidids_or_videos = [self.dataset['videos'][0]['id']] >>> self.remove_videos(vidids_or_videos) # xdoc: +IGNORE_WANT {'annotations': 4, 'images': 2, 'videos': 1} >>> assert len(self.dataset['videos']) == 7 >>> self._check_index()
- remove_annotation_keypoints(kp_identifiers)[source]¶
Removes all keypoints with a particular category
- Parameters
kp_identifiers (List) – list of keypoint category dicts, names, or ids
- Returns
num_removed: information on the number of items removed
- Return type
Dict
- remove_keypoint_categories(kp_identifiers)[source]¶
Removes all keypoints of a particular category as well as all annotation keypoints with those ids.
- Parameters
kp_identifiers (List) – list of keypoint category dicts, names, or ids
- Returns
num_removed: information on the number of items removed
- Return type
Dict
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('shapes', rng=0) >>> kp_identifiers = ['left_eye', 'mid_tip'] >>> remove_info = self.remove_keypoint_categories(kp_identifiers) >>> print('remove_info = {!r}'.format(remove_info)) >>> # FIXME: for whatever reason demodata generation is not determenistic when seeded >>> # assert remove_info == {'keypoint_categories': 2, 'annotation_keypoints': 16, 'reflection_ids': 1} >>> assert self._resolve_to_kpcat('right_eye')['reflection_id'] is None
- set_annotation_category(aid_or_ann, cid_or_cat)[source]¶
Sets the category of a single annotation
- Parameters
aid_or_ann (dict | int) – annotation dict or id
cid_or_cat (dict | int) – category dict or id
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> old_freq = self.category_annotation_frequency() >>> aid_or_ann = aid = 2 >>> cid_or_cat = new_cid = self.ensure_category('kitten') >>> self.set_annotation_category(aid, new_cid) >>> new_freq = self.category_annotation_frequency() >>> print('new_freq = {}'.format(ub.urepr(new_freq, nl=1))) >>> print('old_freq = {}'.format(ub.urepr(old_freq, nl=1))) >>> assert sum(new_freq.values()) == sum(old_freq.values()) >>> assert new_freq['kitten'] == 1
- class kwcoco.coco_dataset.CocoIndex[source]¶
Bases:
object
Fast lookup index for the COCO dataset with dynamic modification
- Variables
imgs (Dict[int, dict]) – mapping between image ids and the image dictionaries
anns (Dict[int, dict]) – mapping between annotation ids and the annotation dictionaries
cats (Dict[int, dict]) – mapping between category ids and the category dictionaries
kpcats (Dict[int, dict]) – mapping between keypoint category ids and keypoint category dictionaries
gid_to_aids (Dict[int, List[int]]) – mapping between an image-id and annotation-ids that belong to it
cid_to_aids (Dict[int, List[int]]) – mapping between an category-id and annotation-ids that belong to it
cid_to_gids (Dict[int, List[int]]) – mapping between an category-id and image-ids that contain at least one annotation with this cateogry id.
trackid_to_aids (Dict[int, List[int]]) – mapping between a track-id and annotation-ids that belong to it
vidid_to_gids (Dict[int, List[int]]) – mapping between an video-id and images-ids that belong to it
name_to_video (Dict[str, dict]) – mapping between a video name and the video dictionary.
name_to_cat (Dict[str, dict]) – mapping between a category name and the category dictionary.
name_to_img (Dict[str, dict]) – mapping between a image name and the image dictionary.
file_name_to_img (Dict[str, dict]) – mapping between a image file_name and the image dictionary.
- _images_set_sorted_by_frame_index(gids=None)[source]¶
Helper for ensuring that vidid_to_gids returns image ids ordered by frame index.
- _set_sorted_by_frame_index(gids=None)¶
Helper for ensuring that vidid_to_gids returns image ids ordered by frame index.
- _annots_set_sorted_by_frame_index(aids=None)[source]¶
Helper for ensuring that vidid_to_gids returns image ids ordered by frame index.
- property cid_to_gids¶
Example:
>>> import kwcoco >>> self = dset = kwcoco.CocoDataset() >>> self.index.cid_to_gids
- _add_image(gid, img)[source]¶
Example
>>> # Test adding image to video that doesnt exist >>> import kwcoco >>> self = dset = kwcoco.CocoDataset() >>> dset.add_image(file_name='frame1', video_id=1, frame_index=0) >>> dset.add_image(file_name='frame2', video_id=1, frame_index=0) >>> dset._check_pointers() >>> dset._check_index() >>> print('dset.index.vidid_to_gids = {!r}'.format(dset.index.vidid_to_gids)) >>> assert len(dset.index.vidid_to_gids) == 1 >>> dset.add_video(name='foo-vid', id=1) >>> assert len(dset.index.vidid_to_gids) == 1 >>> dset._check_pointers() >>> dset._check_index()
- _add_images(imgs)[source]¶
See ../dev/bench/bench_add_image_check.py
Note
THIS FUNCTION WAS DESIGNED FOR SPEED, AS SUCH IT DOES NOT CHECK IF THE IMAGE-IDs or FILE_NAMES ARE DUPLICATED AND WILL BLINDLY ADD DATA EVEN IF IT IS BAD. THE SINGLE IMAGE VERSION IS SLOWER BUT SAFER.
- build(parent)[source]¶
Build all id-to-obj reverse indexes from scratch.
- Parameters
parent (kwcoco.CocoDataset) – the dataset to index
- Notation:
aid - Annotation ID gid - imaGe ID cid - Category ID vidid - Video ID
Example
>>> import kwcoco >>> parent = kwcoco.CocoDataset.demo('vidshapes1', num_frames=4, rng=1) >>> index = parent.index >>> index.build(parent)
- class kwcoco.coco_dataset.MixinCocoIndex[source]¶
Bases:
object
Give the dataset top level access to index attributes
- property anns¶
- property imgs¶
- property cats¶
- property gid_to_aids¶
- property cid_to_aids¶
- property name_to_cat¶
- class kwcoco.coco_dataset.CocoDataset(data=None, tag=None, bundle_dpath=None, img_root=None, fname=None, autobuild=True)[source]¶
Bases:
AbstractCocoDataset
,MixinCocoAddRemove
,MixinCocoStats
,MixinCocoObjects
,MixinCocoDraw
,MixinCocoAccessors
,MixinCocoExtras
,MixinCocoIndex
,MixinCocoDepricate
,NiceRepr
The main coco dataset class with a json dataset backend.
- Variables
dataset (Dict) – raw json data structure. This is the base dictionary that contains {‘annotations’: List, ‘images’: List, ‘categories’: List}
index (CocoIndex) – an efficient lookup index into the coco data structure. The index defines its own attributes like
anns
,cats
,imgs
,gid_to_aids
,file_name_to_img
, etc. SeeCocoIndex
for more details on which attributes are available.fpath (PathLike | None) – if known, this stores the filepath the dataset was loaded from
tag (str | None) – A tag indicating the name of the dataset.
bundle_dpath (PathLike | None) – If known, this is the root path that all image file names are relative to. This can also be manually overwritten by the user.
hashid (str | None) – If computed, this will be a hash uniquely identifing the dataset. To ensure this is computed see
kwcoco.coco_dataset.MixinCocoExtras._build_hashid()
.
References
http://cocodataset.org/#format http://cocodataset.org/#download
CommandLine
python -m kwcoco.coco_dataset CocoDataset --show
Example
>>> from kwcoco.coco_dataset import demo_coco_data >>> import kwcoco >>> import ubelt as ub >>> # Returns a coco json structure >>> dataset = demo_coco_data() >>> # Pass the coco json structure to the API >>> self = kwcoco.CocoDataset(dataset, tag='demo') >>> # Now you can access the data using the index and helper methods >>> # >>> # Start by looking up an image by it's COCO id. >>> image_id = 1 >>> img = self.index.imgs[image_id] >>> print(ub.urepr(img, nl=1, sort=1)) { 'file_name': 'astro.png', 'id': 1, 'url': 'https://i.imgur.com/KXhKM72.png', } >>> # >>> # Use the (gid_to_aids) index to lookup annotations in the iamge >>> annotation_id = sorted(self.index.gid_to_aids[image_id])[0] >>> ann = self.index.anns[annotation_id] >>> print(ub.urepr((ub.udict(ann) - {'segmentation'}).sorted_keys(), nl=1)) { 'bbox': [10, 10, 360, 490], 'category_id': 1, 'id': 1, 'image_id': 1, 'keypoints': [247, 101, 2, 202, 100, 2], } >>> # >>> # Use annotation category id to look up that information >>> category_id = ann['category_id'] >>> cat = self.index.cats[category_id] >>> print('cat = {}'.format(ub.urepr(cat, nl=1, sort=1))) cat = { 'id': 1, 'name': 'astronaut', 'supercategory': 'human', } >>> # >>> # Now play with some helper functions, like extended statistics >>> extended_stats = self.extended_stats() >>> # xdoctest: +IGNORE_WANT >>> print('extended_stats = {}'.format(ub.urepr(extended_stats, nl=1, precision=2, sort=1))) extended_stats = { 'annots_per_img': {'mean': 3.67, 'std': 3.86, 'min': 0.00, 'max': 9.00, 'nMin': 1, 'nMax': 1, 'shape': (3,)}, 'imgs_per_cat': {'mean': 0.88, 'std': 0.60, 'min': 0.00, 'max': 2.00, 'nMin': 2, 'nMax': 1, 'shape': (8,)}, 'cats_per_img': {'mean': 2.33, 'std': 2.05, 'min': 0.00, 'max': 5.00, 'nMin': 1, 'nMax': 1, 'shape': (3,)}, 'annots_per_cat': {'mean': 1.38, 'std': 1.49, 'min': 0.00, 'max': 5.00, 'nMin': 2, 'nMax': 1, 'shape': (8,)}, 'imgs_per_video': {'empty_list': True}, } >>> # You can "draw" a raster of the annotated image with cv2 >>> canvas = self.draw_image(2) >>> # Or if you have matplotlib you can "show" the image with mpl objects >>> # xdoctest: +REQUIRES(--show) >>> from matplotlib import pyplot as plt >>> fig = plt.figure() >>> ax1 = fig.add_subplot(1, 2, 1) >>> self.show_image(gid=2) >>> ax2 = fig.add_subplot(1, 2, 2) >>> ax2.imshow(canvas) >>> ax1.set_title('show with matplotlib') >>> ax2.set_title('draw with cv2') >>> plt.show()
- Parameters
data (str | PathLike | dict | None) – Either a filepath to a coco json file, or a dictionary containing the actual coco json structure. For a more generally coercable constructor see func:CocoDataset.coerce.
tag (str | None) – Name of the dataset for display purposes, and does not influence behavior of the underlying data structure, although it may be used via convinience methods. We attempt to autopopulate this via information in
data
if available. If unspecfied anddata
is a filepath this becomes the basename.bundle_dpath (str | None) – the root of the dataset that images / external data will be assumed to be relative to. If unspecfied, we attempt to determine it using information in
data
. Ifdata
is a filepath, we use the dirname of that path. Ifdata
is a dictionary, we look for the “img_root” key. If unspecfied and we fail to introspect then, we fallback to the current working directory.img_root (str | None) – deprecated alias for bundle_dpath
- property fpath¶
In the future we will deprecate img_root for bundle_dpath
- classmethod from_data(data, bundle_dpath=None, img_root=None)[source]¶
Constructor from a json dictionary
- classmethod from_image_paths(gpaths, bundle_dpath=None, img_root=None)[source]¶
Constructor from a list of images paths.
This is a convinience method.
- Parameters
gpaths (List[str]) – list of image paths
Example
>>> import kwcoco >>> coco_dset = kwcoco.CocoDataset.from_image_paths(['a.png', 'b.png']) >>> assert coco_dset.n_images == 2
- classmethod coerce_multiple(datas, workers=0, mode='process', verbose=1, postprocess=None, ordered=True, **kwargs)[source]¶
Coerce multiple CocoDataset objects in parallel.
- Parameters
datas (List) – list of kwcoco coercables to load
workers (int | str) – number of worker threads / processes. Can also accept coerceable workers.
mode (str) – thread, process, or serial. Defaults to process.
verbose (int) – verbosity level
postprocess (Callable | None) – A function taking one arg (the loaded dataset) to run on the loaded kwcoco dataset in background workers. This can be more efficient when postprocessing is independent per kwcoco file.
ordered (bool) – if True yields datasets in the same order as given. Otherwise results are yielded as they become available. Defaults to True.
**kwargs – arguments passed to the constructor
- Yields
CocoDataset
- SeeAlso:
load_multiple - like this function but is a strict file-path-only loader
CommandLine
xdoctest -m kwcoco.coco_dataset CocoDataset.coerce_multiple
Example
>>> import kwcoco >>> dset1 = kwcoco.CocoDataset.demo('shapes1') >>> dset2 = kwcoco.CocoDataset.demo('shapes2') >>> dset3 = kwcoco.CocoDataset.demo('vidshapes8') >>> dsets = [dset1, dset2, dset3] >>> input_fpaths = [d.fpath for d in dsets] >>> results = list(kwcoco.CocoDataset.coerce_multiple(input_fpaths, ordered=True)) >>> result_fpaths = [r.fpath for r in results] >>> assert result_fpaths == input_fpaths >>> # Test unordered >>> results1 = list(kwcoco.CocoDataset.coerce_multiple(input_fpaths, ordered=False)) >>> result_fpaths = [r.fpath for r in results] >>> assert set(result_fpaths) == set(input_fpaths) >>> # >>> # Coerce from existing datasets >>> results2 = list(kwcoco.CocoDataset.coerce_multiple(dsets, ordered=True, workers=0)) >>> assert results2[0] is dsets[0]
- classmethod load_multiple(fpaths, workers=0, mode='process', verbose=1, postprocess=None, ordered=True, **kwargs)[source]¶
Load multiple CocoDataset objects in parallel.
- Parameters
fpaths (List[str | PathLike]) – list of paths to multiple coco files to be loaded
workers (int) – number of worker threads / processes
mode (str) – thread, process, or serial. Defaults to process.
verbose (int) – verbosity level
postprocess (Callable | None) – A function taking one arg (the loaded dataset) to run on the loaded kwcoco dataset in background workers and returns the modified dataset. This can be more efficient when postprocessing is independent per kwcoco file.
ordered (bool) – if True yields datasets in the same order as given. Otherwise results are yielded as they become available. Defaults to True.
**kwargs – arguments passed to the constructor
- Yields
CocoDataset
- SeeAlso:
- coerce_multiple - like this function but accepts general
coercable inputs.
- classmethod _load_multiple(_loader, inputs, workers=0, mode='process', verbose=1, postprocess=None, ordered=True, **kwargs)[source]¶
Shared logic for multiprocessing loaders.
- SeeAlso:
coerce_multiple
load_multiple
- classmethod from_coco_paths(fpaths, max_workers=0, verbose=1, mode='thread', union='try')[source]¶
Constructor from multiple coco file paths.
Loads multiple coco datasets and unions the result
Note
if the union operation fails, the list of individually loaded files is returned instead.
- Parameters
fpaths (List[str]) – list of paths to multiple coco files to be loaded and unioned.
max_workers (int) – number of worker threads / processes
verbose (int) – verbosity level
mode (str) – thread, process, or serial
union (str | bool) – If True, unions the result datasets after loading. If False, just returns the result list. If ‘try’, then try to preform the union, but return the result list if it fails. Default=’try’
Note
This may be deprecated. Use load_multiple or coerce_multiple and then manually perform the union.
- copy()[source]¶
Deep copies this object
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> new = self.copy() >>> assert new.imgs[1] is new.dataset['images'][0] >>> assert new.imgs[1] == self.dataset['images'][0] >>> assert new.imgs[1] is not self.dataset['images'][0]
- dumps(indent=None, newlines=False)[source]¶
Writes the dataset out to the json format
- Parameters
newlines (bool) – if True, each annotation, image, category gets its own line
indent (int | str | None) – indentation for the json file. See
json.dump()
for details.newlines (bool) – if True, each annotation, image, category gets its own line.
Note
- Using newlines=True is similar to:
print(ub.urepr(dset.dataset, nl=2, trailsep=False)) However, the above may not output valid json if it contains ndarrays.
Example
>>> import kwcoco >>> import json >>> self = kwcoco.CocoDataset.demo() >>> text = self.dumps(newlines=True) >>> print(text) >>> self2 = kwcoco.CocoDataset(json.loads(text), tag='demo2') >>> assert self2.dataset == self.dataset >>> assert self2.dataset is not self.dataset
>>> text = self.dumps(newlines=True) >>> print(text) >>> self2 = kwcoco.CocoDataset(json.loads(text), tag='demo2') >>> assert self2.dataset == self.dataset >>> assert self2.dataset is not self.dataset
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.coerce('vidshapes1-msi-multisensor', verbose=3) >>> self.remove_annotations(self.annots()) >>> text = self.dumps(newlines=0, indent=' ') >>> print(text) >>> text = self.dumps(newlines=True, indent=' ') >>> print(text)
- _compress_dump_to_fileptr(file, arcname=None, indent=None, newlines=False)[source]¶
Experimental method to save compressed kwcoco files, may be folded into dump in the future.
- _dump(file, indent, newlines, compress)[source]¶
Case where we are dumping to an open file pointer. We assume this means the dataset has been written to disk.
- dump(file=None, indent=None, newlines=False, temp_file='auto', compress='auto')[source]¶
Writes the dataset out to the json format
- Parameters
file (PathLike | IO | None) – Where to write the data. Can either be a path to a file or an open file pointer / stream. If unspecified, it will be written to the current
fpath
property.indent (int | str | None) – indentation for the json file. See
json.dump()
for details.newlines (bool) – if True, each annotation, image, category gets its own line.
temp_file (bool | str) – Argument to
safer.open()
. Ignored iffile
is not a PathLike object. Defaults to ‘auto’, which is False on Windows and True everywhere else.compress (bool | str) – if True, dumps the kwcoco file as a compressed zipfile. In this case a literal IO file object must be opened in binary write mode. If auto, then it will default to False unless it can introspect the file name and the name ends with .zip
Example
>>> import kwcoco >>> import ubelt as ub >>> dpath = ub.Path.appdir('kwcoco/demo/dump').ensuredir() >>> dset = kwcoco.CocoDataset.demo() >>> dset.fpath = dpath / 'my_coco_file.json' >>> # Calling dump writes to the current fpath attribute. >>> dset.dump() >>> assert dset.dataset == kwcoco.CocoDataset(dset.fpath).dataset >>> assert dset.dumps() == dset.fpath.read_text() >>> # >>> # Using compress=True can save a lot of space and it >>> # is transparent when reading files via CocoDataset >>> dset.dump(compress=True) >>> assert dset.dataset == kwcoco.CocoDataset(dset.fpath).dataset >>> assert dset.dumps() != dset.fpath.read_text(errors='replace')
Example
>>> import kwcoco >>> import ubelt as ub >>> # Compression auto-defaults based on the file name. >>> dpath = ub.Path.appdir('kwcoco/demo/dump').ensuredir() >>> dset = kwcoco.CocoDataset.demo() >>> fpath1 = dset.fpath = dpath / 'my_coco_file.zip' >>> dset.dump() >>> fpath2 = dset.fpath = dpath / 'my_coco_file.json' >>> dset.dump() >>> assert fpath1.read_bytes()[0:8] != fpath2.read_bytes()[0:8]
- _check_json_serializable(verbose=1)[source]¶
Debug which part of a coco dataset might not be json serializable
- _check_index()[source]¶
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> self._check_index() >>> # Force a failure >>> self.index.anns.pop(1) >>> self.index.anns.pop(2) >>> import pytest >>> with pytest.raises(AssertionError): >>> self._check_index()
- _abc_impl = <_abc_data object>¶
- _check_pointers(verbose=1)[source]¶
Check that all category and image ids referenced by annotations exist
- union(*, disjoint_tracks=True, remember_parent=False, **kwargs)[source]¶
Merges multiple
CocoDataset
items into one. Names and associations are retained, but ids may be different.- Parameters
*others – a series of CocoDatasets that we will merge. Note, if called as an instance method, the “self” instance will be the first item in the “others” list. But if called like a classmethod, “others” will be empty by default.
disjoint_tracks (bool) – if True, we will assume track-ids are disjoint and if two datasets share the same track-id, we will disambiguate them. Otherwise they will be copied over as-is. Defaults to True.
remember_parent (bool) – if True, videos and images will save information about their parent in the “union_parent” field.
**kwargs – constructor options for the new merged CocoDataset
- Returns
a new merged coco dataset
- Return type
CommandLine
xdoctest -m kwcoco.coco_dataset CocoDataset.union
Example
>>> import kwcoco >>> # Test union works with different keypoint categories >>> dset1 = kwcoco.CocoDataset.demo('shapes1') >>> dset2 = kwcoco.CocoDataset.demo('shapes2') >>> dset1.remove_keypoint_categories(['bot_tip', 'mid_tip', 'right_eye']) >>> dset2.remove_keypoint_categories(['top_tip', 'left_eye']) >>> dset_12a = kwcoco.CocoDataset.union(dset1, dset2) >>> dset_12b = dset1.union(dset2) >>> dset_21 = dset2.union(dset1) >>> def add_hist(h1, h2): >>> return {k: h1.get(k, 0) + h2.get(k, 0) for k in set(h1) | set(h2)} >>> kpfreq1 = dset1.keypoint_annotation_frequency() >>> kpfreq2 = dset2.keypoint_annotation_frequency() >>> kpfreq_want = add_hist(kpfreq1, kpfreq2) >>> kpfreq_got1 = dset_12a.keypoint_annotation_frequency() >>> kpfreq_got2 = dset_12b.keypoint_annotation_frequency() >>> assert kpfreq_want == kpfreq_got1 >>> assert kpfreq_want == kpfreq_got2
>>> # Test disjoint gid datasets >>> dset1 = kwcoco.CocoDataset.demo('shapes3') >>> for new_gid, img in enumerate(dset1.dataset['images'], start=10): >>> for aid in dset1.gid_to_aids[img['id']]: >>> dset1.anns[aid]['image_id'] = new_gid >>> img['id'] = new_gid >>> dset1.index.clear() >>> dset1._build_index() >>> # ------ >>> dset2 = kwcoco.CocoDataset.demo('shapes2') >>> for new_gid, img in enumerate(dset2.dataset['images'], start=100): >>> for aid in dset2.gid_to_aids[img['id']]: >>> dset2.anns[aid]['image_id'] = new_gid >>> img['id'] = new_gid >>> dset1.index.clear() >>> dset2._build_index() >>> others = [dset1, dset2] >>> merged = kwcoco.CocoDataset.union(*others) >>> print('merged = {!r}'.format(merged)) >>> print('merged.imgs = {}'.format(ub.urepr(merged.imgs, nl=1))) >>> assert set(merged.imgs) & set([10, 11, 12, 100, 101]) == set(merged.imgs)
>>> # Test data is not preserved >>> dset2 = kwcoco.CocoDataset.demo('shapes2') >>> dset1 = kwcoco.CocoDataset.demo('shapes3') >>> others = (dset1, dset2) >>> cls = self = kwcoco.CocoDataset >>> merged = cls.union(*others) >>> print('merged = {!r}'.format(merged)) >>> print('merged.imgs = {}'.format(ub.urepr(merged.imgs, nl=1))) >>> assert set(merged.imgs) & set([1, 2, 3, 4, 5]) == set(merged.imgs)
>>> # Test track-ids are mapped correctly >>> dset1 = kwcoco.CocoDataset.demo('vidshapes1') >>> dset2 = kwcoco.CocoDataset.demo('vidshapes2') >>> dset3 = kwcoco.CocoDataset.demo('vidshapes3') >>> others = (dset1, dset2, dset3) >>> for dset in others: >>> [a.pop('segmentation', None) for a in dset.index.anns.values()] >>> [a.pop('keypoints', None) for a in dset.index.anns.values()] >>> cls = self = kwcoco.CocoDataset >>> merged = cls.union(*others, disjoint_tracks=1) >>> print('dset1.anns = {}'.format(ub.urepr(dset1.anns, nl=1))) >>> print('dset2.anns = {}'.format(ub.urepr(dset2.anns, nl=1))) >>> print('dset3.anns = {}'.format(ub.urepr(dset3.anns, nl=1))) >>> print('merged.anns = {}'.format(ub.urepr(merged.anns, nl=1)))
Example
>>> import kwcoco >>> # Test empty union >>> empty_union = kwcoco.CocoDataset.union() >>> assert len(empty_union.index.imgs) == 0
Todo
[ ] are supercategories broken?
[ ] reuse image ids where possible
[ ] reuse annotation / category ids where possible
[X] handle case where no inputs are given
[x] disambiguate track-ids
[x] disambiguate video-ids
- subset(gids, copy=False, autobuild=True)[source]¶
Return a subset of the larger coco dataset by specifying which images to port. All annotations in those images will be taken.
- Parameters
gids (List[int]) – image-ids to copy into a new dataset
copy (bool) – if True, makes a deep copy of all nested attributes, otherwise makes a shallow copy. Defaults to True.
autobuild (bool) – if True will automatically build the fast lookup index. Defaults to True.
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> gids = [1, 3] >>> sub_dset = self.subset(gids) >>> assert len(self.index.gid_to_aids) == 3 >>> assert len(sub_dset.gid_to_aids) == 2
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('vidshapes2') >>> gids = [1, 2] >>> sub_dset = self.subset(gids, copy=True) >>> assert len(sub_dset.index.videos) == 1 >>> assert len(self.index.videos) == 2
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> sub1 = self.subset([1]) >>> sub2 = self.subset([2]) >>> sub3 = self.subset([3]) >>> others = [sub1, sub2, sub3] >>> rejoined = kwcoco.CocoDataset.union(*others) >>> assert len(sub1.anns) == 9 >>> assert len(sub2.anns) == 2 >>> assert len(sub3.anns) == 0 >>> assert rejoined.basic_stats() == self.basic_stats()
- view_sql(force_rewrite=False, memory=False, backend='sqlite', sql_db_fpath=None)[source]¶
Create a cached SQL interface to this dataset suitable for large scale multiprocessing use cases.
- Parameters
force_rewrite (bool) – if True, forces an update to any existing cache file on disk
memory (bool) – if True, the database is constructed in memory.
backend (str) – sqlite or postgresql
sql_db_fpath (str | PathLike | None) – overrides the database uri
Note
This view cache is experimental and currently depends on the timestamp of the file pointed to by
self.fpath
. In other words dont use this on in-memory datasets.CommandLine
KWCOCO_WITH_POSTGRESQL=1 xdoctest -m /home/joncrall/code/kwcoco/kwcoco/coco_dataset.py CocoDataset.view_sql
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> # xdoctest: +REQUIRES(env:KWCOCO_WITH_POSTGRESQL) >>> # xdoctest: +REQUIRES(module:psycopg2) >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes32') >>> postgres_dset = dset.view_sql(backend='postgresql', force_rewrite=True) >>> sqlite_dset = dset.view_sql(backend='sqlite', force_rewrite=True) >>> list(dset.anns.keys()) >>> list(postgres_dset.anns.keys()) >>> list(sqlite_dset.anns.keys())
- kwcoco.coco_dataset.demo_coco_data()[source]¶
Simple data for testing.
This contains several non-standard fields, which help ensure robustness of functions tested with this data. For more compliant demodata see the
kwcoco.demodata
submodule.Example
>>> # xdoctest: +REQUIRES(--show) >>> import kwcoco >>> from kwcoco.coco_dataset import demo_coco_data >>> dataset = demo_coco_data() >>> self = kwcoco.CocoDataset(dataset, tag='demo') >>> import kwplot >>> kwplot.autompl() >>> self.show_image(gid=1) >>> kwplot.show_if_requested()
kwcoco.coco_evaluator module¶
Evaluates a predicted coco dataset against a truth coco dataset.
This currently computes detection-level metrics.
The components in this module work programatically or as a command line script.
Todo
- [ ] does evaluate return one result or multiple results
based on different configurations?
[ ] max_dets - TODO: in original pycocoutils but not here
[ ] Flag that allows for polygon instead of bounding box overlap
- [ ] How do we note what iou_thresh and area-range were in
the result plots?
CommandLine
xdoctest -m kwcoco.coco_evaluator __doc__:0 --vd --slow
Example
>>> from kwcoco.coco_evaluator import * # NOQA
>>> from kwcoco.coco_evaluator import CocoEvaluator
>>> import kwcoco
>>> # note: increase the number of images for better looking metrics
>>> true_dset = kwcoco.CocoDataset.demo('shapes8')
>>> from kwcoco.demo.perterb import perterb_coco
>>> kwargs = {
>>> 'box_noise': 0.5,
>>> 'n_fp': (0, 10),
>>> 'n_fn': (0, 10),
>>> 'with_probs': True,
>>> }
>>> pred_dset = perterb_coco(true_dset, **kwargs)
>>> print('true_dset = {!r}'.format(true_dset))
>>> print('pred_dset = {!r}'.format(pred_dset))
>>> config = {
>>> 'true_dataset': true_dset,
>>> 'pred_dataset': pred_dset,
>>> 'area_range': ['all', 'small'],
>>> 'iou_thresh': [0.3, 0.95],
>>> }
>>> coco_eval = CocoEvaluator(config)
>>> results = coco_eval.evaluate()
>>> # Now we can draw / serialize the results as we please
>>> dpath = ub.Path.appdir('kwcoco/tests/test_out_dpath').ensuredir()
>>> results_fpath = dpath / 'metrics.json'
>>> print('results_fpath = {!r}'.format(results_fpath))
>>> results.dump(results_fpath, indent=' ')
>>> measures = results['area_range=all,iou_thresh=0.3'].nocls_measures
>>> import pandas as pd
>>> print(pd.DataFrame(ub.dict_isect(
>>> measures, ['f1', 'g1', 'mcc', 'thresholds',
>>> 'ppv', 'tpr', 'tnr', 'npv', 'fpr',
>>> 'tp_count', 'fp_count',
>>> 'tn_count', 'fn_count'])).iloc[::100])
>>> # xdoctest: +REQUIRES(module:kwplot)
>>> # xdoctest: +REQUIRES(--slow)
>>> results.dump_figures(dpath)
>>> print('dpath = {!r}'.format(dpath))
>>> # xdoctest: +REQUIRES(--vd)
>>> if ub.argflag('--vd') or 1:
>>> import xdev
>>> xdev.view_directory(dpath)
- class kwcoco.coco_evaluator.CocoEvalConfig(*args, **kwargs)[source]¶
Bases:
DataConfig
Evaluate and score predicted versus truth detections / classifications in a COCO dataset
Valid options: []
- Parameters
*args – positional arguments for this data config
**kwargs – keyword arguments for this data config
- default = {'ap_method': <Value('pycocotools')>, 'area_range': <Value(['all'])>, 'assign_workers': <Value(8)>, 'classes_of_interest': <Value(None)>, 'compat': <Value('mutex')>, 'force_pycocoutils': <Value(False)>, 'fp_cutoff': <Value(inf)>, 'ignore_classes': <Value(None)>, 'implicit_ignore_classes': <Value(['ignore'])>, 'implicit_negative_classes': <Value(['background'])>, 'iou_bias': <Value(1)>, 'iou_thresh': <Value(0.5)>, 'load_workers': <Value(0)>, 'max_dets': <Value(inf)>, 'monotonic_ppv': <Value(True)>, 'pred_dataset': <Value(None)>, 'true_dataset': <Value(None)>, 'use_area_attr': <Value('try')>, 'use_image_names': <Value(False)>}¶
- normalize()¶
- class kwcoco.coco_evaluator.CocoEvaluator(config)[source]¶
Bases:
object
Abstracts the evaluation process to execute on two coco datasets.
This can be run as a standalone script where the user specifies the paths to the true and predited dataset explicitly, or this can be used by a higher level script that produces the predictions and then sends them to this evaluator.
Example
>>> from kwcoco.coco_evaluator import CocoEvaluator >>> from kwcoco.demo.perterb import perterb_coco >>> import kwcoco >>> true_dset = kwcoco.CocoDataset.demo('shapes8') >>> kwargs = { >>> 'box_noise': 0.5, >>> 'n_fp': (0, 10), >>> 'n_fn': (0, 10), >>> 'with_probs': True, >>> } >>> pred_dset = perterb_coco(true_dset, **kwargs) >>> config = { >>> 'true_dataset': true_dset, >>> 'pred_dataset': pred_dset, >>> 'classes_of_interest': [], >>> } >>> coco_eval = CocoEvaluator(config) >>> results = coco_eval.evaluate()
- _init()[source]¶
Performs initial coercion from given inputs into dictionaries of kwimage.Detection objects and attempts to ensure comparable category and image ids.
- classmethod _coerce_dets(dataset, verbose=0, workers=0)[source]¶
Coerce the input to a mapping from image-id to kwimage.Detection
Also capture a CocoDataset if possible.
- Returns
gid_to_det: mapping from gid to dets extra: any extra information we gathered via coercion
- Return type
Tuple[Dict[int, Detections], Dict]
Example
>>> from kwcoco.coco_evaluator import * # NOQA >>> import kwcoco >>> coco_dset = kwcoco.CocoDataset.demo('shapes8') >>> gid_to_det, extras = CocoEvaluator._coerce_dets(coco_dset)
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_evaluator import * # NOQA >>> import kwcoco >>> coco_dset = kwcoco.CocoDataset.demo('shapes8').view_sql() >>> gid_to_det, extras = CocoEvaluator._coerce_dets(coco_dset)
- _build_dmet()[source]¶
Builds the detection metrics object
- Returns
- DetectionMetrics - object that can perform assignment and
build confusion vectors.
- evaluate()[source]¶
Executes the main evaluation logic. Performs assignments between detections to make DetectionMetrics object, then creates per-item and ovr confusion vectors, and performs various threshold-vs-confusion analyses.
- Returns
- container storing (and capable of drawing /
serializing) results
- Return type
- kwcoco.coco_evaluator.dmet_area_weights(dmet, orig_weights, cfsn_vecs, area_ranges, coco_eval, use_area_attr=False)[source]¶
Hacky function to compute confusion vector ignore weights for different area thresholds. Needs to be slightly refactored.
- class kwcoco.coco_evaluator.CocoResults(resdata=None)[source]¶
-
CommandLine
xdoctest -m /home/joncrall/code/kwcoco/kwcoco/coco_evaluator.py CocoResults --profile
Example
>>> from kwcoco.coco_evaluator import * # NOQA >>> from kwcoco.coco_evaluator import CocoEvaluator >>> import kwcoco >>> true_dset = kwcoco.CocoDataset.demo('shapes2') >>> from kwcoco.demo.perterb import perterb_coco >>> kwargs = { >>> 'box_noise': 0.5, >>> 'n_fp': (0, 10), >>> 'n_fn': (0, 10), >>> } >>> pred_dset = perterb_coco(true_dset, **kwargs) >>> print('true_dset = {!r}'.format(true_dset)) >>> print('pred_dset = {!r}'.format(pred_dset)) >>> config = { >>> 'true_dataset': true_dset, >>> 'pred_dataset': pred_dset, >>> 'area_range': ['small'], >>> 'iou_thresh': [0.3], >>> } >>> coco_eval = CocoEvaluator(config) >>> results = coco_eval.evaluate() >>> # Now we can draw / serialize the results as we please >>> dpath = ub.Path.appdir('kwcoco/tests/test_out_dpath').ensuredir() >>> # >>> # test deserialization works >>> state = results.__json__() >>> self2 = CocoResults.from_json(state) >>> # >>> # xdoctest: +REQUIRES(module:kwplot) >>> results.dump_figures(dpath, figsize=(3, 2), tight=False) # make this go faster >>> results.dump(dpath / 'metrics.json', indent=' ')
- class kwcoco.coco_evaluator.CocoSingleResult(nocls_measures, ovr_measures, cfsn_vecs, meta=None)[source]¶
Bases:
NiceRepr
Container class to store, draw, summarize, and serialize results from CocoEvaluator.
Example
>>> # xdoctest: +REQUIRES(--slow) >>> from kwcoco.coco_evaluator import * # NOQA >>> from kwcoco.coco_evaluator import CocoEvaluator >>> import kwcoco >>> true_dset = kwcoco.CocoDataset.demo('shapes8') >>> from kwcoco.demo.perterb import perterb_coco >>> kwargs = { >>> 'box_noise': 0.2, >>> 'n_fp': (0, 3), >>> 'n_fn': (0, 3), >>> 'with_probs': False, >>> } >>> pred_dset = perterb_coco(true_dset, **kwargs) >>> print('true_dset = {!r}'.format(true_dset)) >>> print('pred_dset = {!r}'.format(pred_dset)) >>> config = { >>> 'true_dataset': true_dset, >>> 'pred_dataset': pred_dset, >>> 'area_range': [(0, 32 ** 2), (32 ** 2, 96 ** 2)], >>> 'iou_thresh': [0.3, 0.5, 0.95], >>> } >>> coco_eval = CocoEvaluator(config) >>> results = coco_eval.evaluate() >>> result = ub.peek(results.values()) >>> state = result.__json__() >>> print('state = {}'.format(ub.urepr(state, nl=-1))) >>> recon = CocoSingleResult.from_json(state) >>> state = recon.__json__() >>> print('state = {}'.format(ub.urepr(state, nl=-1)))
- kwcoco.coco_evaluator._load_dets(pred_fpaths, workers=0)[source]¶
Example
>>> from kwcoco.coco_evaluator import _load_dets, _load_dets_worker >>> import ubelt as ub >>> import kwcoco >>> dpath = ub.Path.appdir('kwcoco/tests/load_dets').ensuredir() >>> N = 4 >>> pred_fpaths = [] >>> for i in range(1, N + 1): >>> dset = kwcoco.CocoDataset.demo('shapes{}'.format(i)) >>> dset.fpath = dpath / 'shapes_{}.mscoco.json'.format(i) >>> dset.dump(dset.fpath) >>> pred_fpaths.append(dset.fpath) >>> dets, coco_dset = _load_dets(pred_fpaths) >>> print('dets = {!r}'.format(dets)) >>> print('coco_dset = {!r}'.format(coco_dset))
kwcoco.coco_image module¶
Defines the CocoImage class which is an object oriented way of manipulating data pointed to by a COCO image dictionary.
Notably this provides the .imdelay
method for delayed image loading ( which
enables things like fast loading of subimage-regions / coarser scales in images
that contain tiles / overviews - e.g. Cloud Optimized Geotiffs or COGs (Medical
image formats may be supported in the future).
- class kwcoco.coco_image.CocoImage(img, dset=None)[source]¶
Bases:
AliasedDictProxy
,NiceRepr
An object-oriented representation of a coco image.
It provides helper methods that are specific to a single image.
This operates directly on a single coco image dictionary, but it can optionally be connected to a parent dataset, which allows it to use CocoDataset methods to query about relationships and resolve pointers.
This is different than the Images class in coco_object1d, which is just a vectorized interface to multiple objects.
Example
>>> import kwcoco >>> dset1 = kwcoco.CocoDataset.demo('shapes8') >>> dset2 = kwcoco.CocoDataset.demo('vidshapes8-multispectral')
>>> self = kwcoco.CocoImage(dset1.imgs[1], dset1) >>> print('self = {!r}'.format(self)) >>> print('self.channels = {}'.format(ub.urepr(self.channels, nl=1)))
>>> self = kwcoco.CocoImage(dset2.imgs[1], dset2) >>> print('self.channels = {}'.format(ub.urepr(self.channels, nl=1))) >>> self.primary_asset() >>> assert 'auxiliary' in self
- property bundle_dpath¶
- property video¶
Helper to grab the video for this image if it exists
- detach()[source]¶
Removes references to the underlying coco dataset, but keeps special information such that it wont be needed.
- property assets¶
- property datetime¶
Try to get datetime information for this image. Not always possible.
- property channels¶
- property num_channels¶
- property dsize¶
- primary_asset(requires=None)[source]¶
Compute a “main” image asset.
Note
Uses a heuristic.
First, try to find the auxiliary image that has with the smallest
distortion to the base image (if known via warp_aux_to_img)
Second, break ties by using the largest image if w / h is known
Last, if previous information not available use the first auxiliary image.
- Parameters
requires (List[str] | None) – list of attribute that must be non-None to consider an object as the primary one.
- Returns
the asset dict or None if it is not found
- Return type
None | dict
Todo
[ ] Add in primary heuristics
Example
>>> import kwarray >>> from kwcoco.coco_image import * # NOQA >>> rng = kwarray.ensure_rng(0) >>> def random_auxiliary(name, w=None, h=None): >>> return {'file_name': name, 'width': w, 'height': h} >>> self = CocoImage({ >>> 'auxiliary': [ >>> random_auxiliary('1'), >>> random_auxiliary('2'), >>> random_auxiliary('3'), >>> ] >>> }) >>> assert self.primary_asset()['file_name'] == '1' >>> self = CocoImage({ >>> 'auxiliary': [ >>> random_auxiliary('1'), >>> random_auxiliary('2', 3, 3), >>> random_auxiliary('3'), >>> ] >>> }) >>> assert self.primary_asset()['file_name'] == '2'
- iter_image_filepaths(with_bundle=True)[source]¶
Could rename to iter_asset_filepaths
- Parameters
with_bundle (bool) – If True, prepends the bundle dpath to fully specify the path. Otherwise, just returns the registered string in the file_name attribute of each asset. Defaults to True.
- Yields
ub.Path
- iter_asset_objs()[source]¶
Iterate through base + auxiliary dicts that have file paths
- Yields
dict – an image or auxiliary dictionary
- find_asset_obj(channels)[source]¶
Find the asset dictionary with the specified channels
Example
>>> import kwcoco >>> coco_img = kwcoco.CocoImage({'width': 128, 'height': 128}) >>> coco_img.add_auxiliary_item( >>> 'rgb.png', channels='red|green|blue', width=32, height=32) >>> assert coco_img.find_asset_obj('red') is not None >>> assert coco_img.find_asset_obj('green') is not None >>> assert coco_img.find_asset_obj('blue') is not None >>> assert coco_img.find_asset_obj('red|blue') is not None >>> assert coco_img.find_asset_obj('red|green|blue') is not None >>> assert coco_img.find_asset_obj('red|green|blue') is not None >>> assert coco_img.find_asset_obj('black') is None >>> assert coco_img.find_asset_obj('r') is None
Example
>>> # Test with concise channel code >>> import kwcoco >>> coco_img = kwcoco.CocoImage({'width': 128, 'height': 128}) >>> coco_img.add_auxiliary_item( >>> 'msi.png', channels='foo.0:128', width=32, height=32) >>> assert coco_img.find_asset_obj('foo') is None >>> assert coco_img.find_asset_obj('foo.3') is not None >>> assert coco_img.find_asset_obj('foo.3:5') is not None >>> assert coco_img.find_asset_obj('foo.3000') is None
- add_annotation(**ann)[source]¶
Adds an annotation to this image.
This is a convinience method, and requires that this CocoImage is still connected to a parent dataset.
- Parameters
**ann – annotation attributes (e.g. bbox, category_id)
- Returns
the new annotation id
- Return type
- SeeAlso:
kwcoco.CocoDataset.add_annotation()
- add_asset(file_name=None, channels=None, imdata=None, warp_aux_to_img=None, width=None, height=None, imwrite=False, image_id=None, **kw)[source]¶
Adds an auxiliary / asset item to the image dictionary.
This operation can be done purely in-memory (the default), or the image data can be written to a file on disk (via the imwrite=True flag).
- Parameters
file_name (str | PathLike | None) – The name of the file relative to the bundle directory. If unspecified, imdata must be given.
channels (str | kwcoco.FusedChannelSpec | None) – The channel code indicating what each of the bands represents. These channels should be disjoint wrt to the existing data in this image (this is not checked).
imdata (ndarray | None) – The underlying image data this auxiliary item represents. If unspecified, it is assumed file_name points to a path on disk that will eventually exist. If imdata, file_name, and the special imwrite=True flag are specified, this function will write the data to disk.
warp_aux_to_img (kwimage.Affine | None) – The transformation from this auxiliary space to image space. If unspecified, assumes this item is related to image space by only a scale factor.
width (int | None) – Width of the data in auxiliary space (inferred if unspecified)
height (int | None) – Height of the data in auxiliary space (inferred if unspecified)
imwrite (bool) – If specified, both imdata and file_name must be specified, and this will write the data to disk. Note: it it recommended that you simply call imwrite yourself before or after calling this function. This lets you better control imwrite parameters.
image_id (int | None) – An asset dictionary contains an image-id, but it should not be specified here. If it is, then it must agree with this image’s id.
**kw – stores arbitrary key/value pairs in this new asset.
Todo
[ ] Allow imwrite to specify an executor that is used to
return a Future so the imwrite call does not block.
Example
>>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> coco_img = dset.coco_image(1) >>> imdata = np.random.rand(32, 32, 5) >>> channels = kwcoco.FusedChannelSpec.coerce('Aux:5') >>> coco_img.add_asset(imdata=imdata, channels=channels)
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset() >>> gid = dset.add_image(name='my_image_name', width=200, height=200) >>> coco_img = dset.coco_image(gid) >>> coco_img.add_asset('path/img1_B0.tif', channels='B0', width=200, height=200) >>> coco_img.add_asset('path/img1_B1.tif', channels='B1', width=200, height=200) >>> coco_img.add_asset('path/img1_B2.tif', channels='B2', width=200, height=200) >>> coco_img.add_asset('path/img1_TCI.tif', channels='r|g|b', width=200, height=200)
- imdelay(channels=None, space='image', resolution=None, bundle_dpath=None, interpolation='linear', antialias=True, nodata_method=None, RESOLUTION_KEY=None)[source]¶
Perform a delayed load on the data in this image.
The delayed load can load a subset of channels, and perform lazy warping operations. If the underlying data is in a tiled format this can reduce the amount of disk IO needed to read the data if only a small crop or lower resolution view of the data is needed.
Note
This method is experimental and relies on the delayed load proof-of-concept.
- Parameters
gid (int) – image id to load
channels (kwcoco.FusedChannelSpec) – specific channels to load. if unspecified, all channels are loaded.
space (str) – can either be “image” for loading in image space, or “video” for loading in video space.
resolution (None | str | float) – If specified, applies an additional scale factor to the result such that the data is loaded at this specified resolution. This requires that the image / video has a registered resolution attribute and that its units agree with this request.
Todo
- [ ] This function could stand to have a better name. Maybe imread
with a delayed=True flag? Or maybe just delayed_load?
Example
>>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> gid = 1 >>> # >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> self = CocoImage(dset.imgs[gid], dset) >>> delayed = self.imdelay() >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> # >>> dset = kwcoco.CocoDataset.demo('shapes8') >>> delayed = dset.coco_image(gid).imdelay() >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize()))
>>> crop = delayed.crop((slice(0, 3), slice(0, 3))) >>> crop.finalize()
>>> # TODO: should only select the "red" channel >>> dset = kwcoco.CocoDataset.demo('shapes8') >>> delayed = CocoImage(dset.imgs[gid], dset).imdelay(channels='r')
>>> import kwcoco >>> gid = 1 >>> # >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> delayed = dset.coco_image(gid).imdelay(channels='B1|B2', space='image') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> delayed = dset.coco_image(gid).imdelay(channels='B1|B2|B11', space='image') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> delayed = dset.coco_image(gid).imdelay(channels='B8|B1', space='video') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize()))
>>> delayed = dset.coco_image(gid).imdelay(channels='B8|foo|bar|B1', space='video') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize()))
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> coco_img = dset.coco_image(1) >>> # Test case where nothing is registered in the dataset >>> delayed = coco_img.imdelay() >>> final = delayed.finalize() >>> assert final.shape == (512, 512, 3)
>>> delayed = coco_img.imdelay() >>> final = delayed.finalize() >>> print('final.shape = {}'.format(ub.urepr(final.shape, nl=1))) >>> assert final.shape == (512, 512, 3)
Example
>>> # Test that delay works when imdata is stored in the image >>> # dictionary itself. >>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> coco_img = dset.coco_image(1) >>> imdata = np.random.rand(6, 6, 5) >>> imdata[:] = np.arange(5)[None, None, :] >>> channels = kwcoco.FusedChannelSpec.coerce('Aux:5') >>> coco_img.add_auxiliary_item(imdata=imdata, channels=channels) >>> delayed = coco_img.imdelay(channels='B1|Aux:2:4') >>> final = delayed.finalize()
Example
>>> # Test delay when loading in asset space >>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-msi-multisensor') >>> coco_img = dset.coco_image(1) >>> stream1 = coco_img.channels.streams()[0] >>> stream2 = coco_img.channels.streams()[1] >>> asset_delayed = coco_img.imdelay(stream1, space='asset') >>> img_delayed = coco_img.imdelay(stream1, space='image') >>> vid_delayed = coco_img.imdelay(stream1, space='video') >>> # >>> aux_imdata = asset_delayed.as_xarray().finalize() >>> img_imdata = img_delayed.as_xarray().finalize() >>> assert aux_imdata.shape != img_imdata.shape >>> # Cannot load multiple asset items at the same time in >>> # asset space >>> import pytest >>> fused_channels = stream1 | stream2 >>> from delayed_image.delayed_nodes import CoordinateCompatibilityError >>> with pytest.raises(CoordinateCompatibilityError): >>> aux_delayed2 = coco_img.imdelay(fused_channels, space='asset')
Example
>>> # Test loading at a specific resolution. >>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-msi-multisensor') >>> coco_img = dset.coco_image(1) >>> coco_img.img['resolution'] = '1 meter' >>> img_delayed1 = coco_img.imdelay(space='image') >>> vid_delayed1 = coco_img.imdelay(space='video') >>> # test with unitless request >>> img_delayed2 = coco_img.imdelay(space='image', resolution=3.1) >>> vid_delayed2 = coco_img.imdelay(space='video', resolution='3.1 meter') >>> np.ceil(img_delayed1.shape[0] / 3.1) == img_delayed2.shape[0] >>> np.ceil(vid_delayed1.shape[0] / 3.1) == vid_delayed2.shape[0] >>> # test with unitless data >>> coco_img.img['resolution'] = 1 >>> img_delayed2 = coco_img.imdelay(space='image', resolution=3.1) >>> vid_delayed2 = coco_img.imdelay(space='video', resolution='3.1 meter') >>> np.ceil(img_delayed1.shape[0] / 3.1) == img_delayed2.shape[0] >>> np.ceil(vid_delayed1.shape[0] / 3.1) == vid_delayed2.shape[0]
- valid_region(space='image')[source]¶
If this image has a valid polygon, return it in image, or video space
- Returns
None | kwimage.MultiPolygon
- property warp_vid_from_img¶
Affine transformation that warps image space -> video space.
- Returns
The transformation matrix
- Return type
- property warp_img_from_vid¶
Affine transformation that warps video space -> image space.
- Returns
The transformation matrix
- Return type
- resolution(space='image', channel=None, RESOLUTION_KEY=None)[source]¶
Returns the resolution of this CocoImage in the requested space if known. Errors if this information is not registered.
- Parameters
space (str) – the space to the resolution of. Can be either “image”, “video”, or “asset”.
channel (str | kwcoco.FusedChannelSpec | None) – a channel that identifies a single asset, only relevant if asking for asset space
- Returns
has items mag (with the magnitude of the resolution) and unit, which is a convinience and only loosely enforced.
- Return type
Dict
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> self = dset.coco_image(1) >>> self.img['resolution'] = 1 >>> self.resolution() >>> self.img['resolution'] = '1 meter' >>> self.resolution(space='video') {'mag': (1.0, 1.0), 'unit': 'meter'} >>> self.resolution(space='asset', channel='B11') >>> self.resolution(space='asset', channel='B1')
- _scalefactor_for_resolution(space, resolution, channel=None, RESOLUTION_KEY=None)[source]¶
Given image or video space, compute the scale factor needed to achieve the target resolution.
# Use this to implement scale_resolution_from_img scale_resolution_from_vid
- Parameters
space (str) – the space to the resolution of. Can be either “image”, “video”, or “asset”.
resolution (str | float | int) – the resolution (ideally with units) you want.
channel (str | kwcoco.FusedChannelSpec | None) – a channel that identifies a single asset, only relevant if asking for asset space
- Returns
the x and y scale factor that can be used to scale the underlying “space” to acheive the requested resolution.
- Return type
- _detections_for_resolution(space='video', resolution=None, RESOLUTION_KEY=None)[source]¶
This is slightly less than ideal in terms of API, but it will work for now.
- add_auxiliary_item(**kwargs)¶
- delay(**kwargs)¶
- show(**kwargs)[source]¶
Show the image with matplotlib if possible
- SeeAlso:
kwcoco.CocoDataset.show_image()
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> self = dset.coco_image(1) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autoplt() >>> self.show()
- draw(**kwargs)[source]¶
Draw the image on an ndarray using opencv
- SeeAlso:
kwcoco.CocoDataset.draw_image()
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> self = dset.coco_image(1) >>> canvas = self.draw() >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(canvas)
- class kwcoco.coco_image.CocoAsset(asset, bundle_dpath=None)[source]¶
Bases:
AliasedDictProxy
,NiceRepr
A Coco Asset / Auxiliary Item
Represents one 2D image file relative to a parent img.
Could be a single asset, or an image with sub-assets, but sub-assets are ignored here.
Initially we called these “auxiliary” items, but I think we should change their name to “assets”, which better maps with STAC terminology.
Example
>>> from kwcoco.coco_image import * # NOQA >>> self = CocoAsset({'warp_aux_to_img': 'foo'}) >>> assert 'warp_aux_to_img' in self >>> assert 'warp_img_from_asset' in self >>> assert 'warp_wld_from_asset' not in self >>> assert 'warp_to_wld' not in self >>> self['warp_aux_to_img'] = 'bar' >>> assert self._proxy == {'warp_aux_to_img': 'bar'}
kwcoco.coco_objects1d module¶
Vectorized ORM-like objects used in conjunction with coco_dataset.
This powers the .images()
, .videos()
, and .annotation()
methods of
kwcoco.CocoDataset
.
- See:
kwcoco.coco_dataset.MixinCocoObjects.categories()
kwcoco.coco_dataset.MixinCocoObjects.videos()
kwcoco.coco_dataset.MixinCocoObjects.images()
kwcoco.coco_dataset.MixinCocoObjects.annots()
- class kwcoco.coco_objects1d.ObjectList1D(ids, dset, key)[source]¶
Bases:
NiceRepr
Vectorized access to lists of dictionary objects
Lightweight reference to a set of object (e.g. annotations, images) that allows for convenient property access.
- Parameters
ids (List[int]) – list of ids
dset (CocoDataset) – parent dataset
key (str) – main object name (e.g. ‘images’, ‘annotations’)
- Types:
ObjT = Ann | Img | Cat # can be one of these types ObjectList1D gives us access to a List[ObjT]
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> # Both annots and images are object lists >>> self = dset.annots() >>> self = dset.images() >>> # can call with a list of ids or not, for everything >>> self = dset.annots([1, 2, 11]) >>> self = dset.images([1, 2, 3]) >>> self.lookup('id') >>> self.lookup(['id'])
- property _id_to_obj¶
- property ids¶
- property objs¶
Get the underlying object dictionary for each object.
- Returns
all object dictionaries
- Return type
List[ObjT]
- take(idxs)[source]¶
Take a subset by index
- Returns
ObjectList1D
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo().annots() >>> assert len(self.take([0, 2, 3])) == 3
- compress(flags)[source]¶
Take a subset by flags
- Returns
ObjectList1D
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo().images() >>> assert len(self.compress([True, False, True])) == 2
- peek()[source]¶
Return the first object dictionary
- Returns
object dictionary
- Return type
ObjT
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> self = dset.images() >>> assert self.peek()['id'] == 1 >>> # Check that subsets return correct items >>> sub0 = self.compress([i % 2 == 0 for i in range(len(self))]) >>> sub1 = self.compress([i % 2 == 1 for i in range(len(self))]) >>> assert sub0.peek()['id'] == 1 >>> assert sub1.peek()['id'] == 2
- lookup(key, default=NoParam, keepid=False)[source]¶
Lookup a list of object attributes
- Parameters
key (str | Iterable) – name of the property you want to lookup can also be a list of names, in which case we return a dict
default – if specified, uses this value if it doesn’t exist in an ObjT.
keepid – if True, return a mapping from ids to the property
- Returns
a list of whatever type the object is Dict[str, ObjT]
- Return type
List[ObjT]
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> self = dset.annots() >>> self.lookup('id') >>> key = ['id'] >>> default = None >>> self.lookup(key=['id', 'image_id']) >>> self.lookup(key=['id', 'image_id']) >>> self.lookup(key='foo', default=None, keepid=True) >>> self.lookup(key=['foo'], default=None, keepid=True) >>> self.lookup(key=['id', 'image_id'], keepid=True)
- get(key, default=NoParam, keepid=False)[source]¶
Lookup a list of object attributes
- Parameters
key (str) – name of the property you want to lookup
default – if specified, uses this value if it doesn’t exist in an ObjT.
keepid – if True, return a mapping from ids to the property
- Returns
a list of whatever type the object is Dict[str, ObjT]
- Return type
List[ObjT]
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> self = dset.annots() >>> self.get('id') >>> self.get(key='foo', default=None, keepid=True)
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> import kwcoco >>> dct_dset = kwcoco.CocoDataset.demo('vidshapes8', rng=303232) >>> dct_dset.anns[3]['blorgo'] = 3 >>> dct_dset.annots().lookup('blorgo', default=None) >>> for a in dct_dset.anns.values(): ... a['wizard'] = '10!' >>> dset = dct_dset.view_sql(force_rewrite=1) >>> assert dset.anns[3]['blorgo'] == 3 >>> assert dset.anns[3]['wizard'] == '10!' >>> assert 'blorgo' not in dset.anns[2] >>> dset.annots().lookup('blorgo', default=None) >>> dset.annots().lookup('wizard', default=None) >>> import pytest >>> with pytest.raises(KeyError): >>> dset.annots().lookup('blorgo') >>> dset.annots().lookup('wizard') >>> #self = dset.annots()
- set(key, values)[source]¶
Assign a value to each annotation
- Parameters
key (str) – the annotation property to modify
values (Iterable | Any) – an iterable of values to set for each annot in the dataset. If the item is not iterable, it is assigned to all objects.
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> self = dset.annots() >>> self.set('my-key1', 'my-scalar-value') >>> self.set('my-key2', np.random.rand(len(self))) >>> print('dset.imgs = {}'.format(ub.urepr(dset.imgs, nl=1))) >>> self.get('my-key2')
- _lookup(key, default=NoParam)[source]¶
Example
>>> # xdoctest: +REQUIRES(--benchmark) >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('shapes256') >>> self = annots = dset.annots() >>> # >>> import timerit >>> ti = timerit.Timerit(100, bestof=10, verbose=2) >>> # >>> for timer in ti.reset('lookup'): >>> with timer: >>> self.lookup('image_id') >>> # >>> for timer in ti.reset('_lookup'): >>> with timer: >>> self._lookup('image_id') >>> # >>> for timer in ti.reset('image_id'): >>> with timer: >>> self.image_id >>> # >>> for timer in ti.reset('raw1'): >>> with timer: >>> key = 'image_id' >>> [self._dset.anns[_id][key] for _id in self._ids] >>> # >>> for timer in ti.reset('raw2'): >>> with timer: >>> anns = self._dset.anns >>> key = 'image_id' >>> [anns[_id][key] for _id in self._ids] >>> # >>> for timer in ti.reset('lut-gen'): >>> with timer: >>> _lut = self._obj_lut >>> objs = (_lut[_id] for _id in self._ids) >>> [obj[key] for obj in objs] >>> # >>> for timer in ti.reset('lut-gen-single'): >>> with timer: >>> _lut = self._obj_lut >>> [_lut[_id][key] for _id in self._ids]
- class kwcoco.coco_objects1d.ObjectGroups(groups, dset)[source]¶
Bases:
NiceRepr
An object for holding a groups of
ObjectList1D
objects
- class kwcoco.coco_objects1d.Categories(ids, dset)[source]¶
Bases:
ObjectList1D
Vectorized access to category attributes
Example
>>> from kwcoco.coco_objects1d import Categories # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> ids = list(dset.cats.keys()) >>> self = Categories(ids, dset) >>> print('self.name = {!r}'.format(self.name)) >>> print('self.supercategory = {!r}'.format(self.supercategory))
- property cids¶
- property name¶
- property supercategory¶
- class kwcoco.coco_objects1d.Videos(ids, dset)[source]¶
Bases:
ObjectList1D
Vectorized access to video attributes
Example
>>> from kwcoco.coco_objects1d import Videos # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes5') >>> ids = list(dset.index.videos.keys()) >>> self = Videos(ids, dset) >>> print('self = {!r}'.format(self)) self = <Videos(num=5) at ...>
- property images¶
Example:
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('vidshapes8').videos() >>> print(self.images) <ImageGroups(n=8, m=2.0, s=0.0)>
- class kwcoco.coco_objects1d.Images(ids, dset)[source]¶
Bases:
ObjectList1D
Vectorized access to image attributes
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('photos') >>> images = dset.images() >>> print('images = {}'.format(images)) images = <Images(num=3)...> >>> print('images.gname = {}'.format(images.gname)) images.gname = ['astro.png', 'carl.jpg', 'stars.png']
- property coco_images¶
- property gids¶
- property gname¶
- property gpath¶
- property width¶
- property height¶
- property size¶
Example:
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo().images() >>> self._dset._ensure_imgsize() ... >>> print(self.size) [(512, 512), (328, 448), (256, 256)]
- property area¶
Example:
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo().images() >>> self._dset._ensure_imgsize() ... >>> print(self.area) [262144, 146944, 65536]
- property n_annots¶
Example:
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo().images() >>> print(ub.urepr(self.n_annots, nl=0)) [9, 2, 0]
- property aids¶
Example:
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo().images() >>> print(ub.urepr(list(map(list, self.aids)), nl=0)) [[1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 11], []]
- property annots¶
Example:
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo().images() >>> print(self.annots) <AnnotGroups(n=3, m=3.7, s=3.9)>
- class kwcoco.coco_objects1d.Annots(ids, dset)[source]¶
Bases:
ObjectList1D
Vectorized access to annotation attributes
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('photos') >>> annots = dset.annots() >>> print('annots = {}'.format(annots)) annots = <Annots(num=11)> >>> image_ids = annots.lookup('image_id') >>> print('image_ids = {}'.format(image_ids)) image_ids = [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2]
- property aids¶
The annotation ids of this column of annotations
- property images¶
Get the column of images
- Returns
Images
- property image_id¶
- property category_id¶
- property cids¶
Get the column of category-ids
- Returns
List[int]
- property cnames¶
Get the column of category names
- Returns
List[int]
- property category_names¶
Get the column of category names
- Returns
List[int]
- property detections¶
Get the kwimage-style detection objects
- Returns
kwimage.Detections
Example
>>> # xdoctest: +REQUIRES(module:kwimage) >>> import kwcoco >>> self = kwcoco.CocoDataset.demo('shapes32').annots([1, 2, 11]) >>> dets = self.detections >>> print('dets.data = {!r}'.format(dets.data)) >>> print('dets.meta = {!r}'.format(dets.meta))
- property boxes¶
Get the column of kwimage-style bounding boxes
- Returns
kwimage.Boxes
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo().annots([1, 2, 11]) >>> print(self.boxes) <Boxes(xywh, array([[ 10, 10, 360, 490], [350, 5, 130, 290], [156, 130, 45, 18]]))>
- class kwcoco.coco_objects1d.AnnotGroups(groups, dset)[source]¶
Bases:
ObjectGroups
Annotation groups are vectorized lists of lists.
Each item represents a set of annotations that corresopnds with something (i.e. belongs to a particular image).
Example
>>> from kwcoco.coco_objects1d import ImageGroups >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('photos') >>> images = dset.images() >>> # Requesting the "annots" property from a Images object >>> # will return an AnnotGroups object >>> group: AnnotGroups = images.annots >>> # Printing the group gives info on the mean/std of the number >>> # of items per group. >>> print(group) <AnnotGroups(n=3, m=3.7, s=3.9)...> >>> # Groups are fairly restrictive, they dont provide property level >>> # access in many cases, but the lookup method is available >>> print(group.lookup('id')) [[1, 2, 3, 4, 5, 6, 7, 8, 9], [10, 11], []] >>> print(group.lookup('image_id')) [[1, 1, 1, 1, 1, 1, 1, 1, 1], [2, 2], []] >>> print(group.lookup('category_id')) [[1, 2, 3, 4, 5, 5, 5, 5, 5], [6, 4], []]
- property cids¶
Get the grouped category ids for annotations in this group
- Return type
List[List[int]]
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('photos').images().annots >>> print('self.cids = {}'.format(ub.urepr(self.cids, nl=0))) self.cids = [[1, 2, 3, 4, 5, 5, 5, 5, 5], [6, 4], []]
- property cnames¶
Get the grouped category names for annotations in this group
- Return type
List[List[str]]
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('photos').images().annots >>> print('self.cnames = {}'.format(ub.urepr(self.cnames, nl=0))) self.cnames = [['astronaut', 'rocket', 'helmet', 'mouth', 'star', 'star', 'star', 'star', 'star'], ['astronomer', 'mouth'], []]
- class kwcoco.coco_objects1d.ImageGroups(groups, dset)[source]¶
Bases:
ObjectGroups
Image groups are vectorized lists of other Image objects.
Each item represents a set of images that corresopnds with something (i.e. belongs to a particular video).
Example
>>> from kwcoco.coco_objects1d import ImageGroups >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8') >>> videos = dset.videos() >>> # Requesting the "images" property from a Videos object >>> # will return an ImageGroups object >>> group: ImageGroups = videos.images >>> # Printing the group gives info on the mean/std of the number >>> # of items per group. >>> print(group) <ImageGroups(n=8, m=2.0, s=0.0)...> >>> # Groups are fairly restrictive, they dont provide property level >>> # access in many cases, but the lookup method is available >>> print(group.lookup('id')) [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14], [15, 16]] >>> print(group.lookup('video_id')) [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6], [7, 7], [8, 8]] >>> print(group.lookup('frame_index')) [[0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1]]
kwcoco.coco_schema module¶
The place where the formal KWCOCO schema is defined.
CommandLine
python -m kwcoco.coco_schema
xdoctest -m kwcoco.coco_schema __doc__
Todo
[ ] Perhaps use voluptuous instead?
Example
>>> import kwcoco
>>> from kwcoco.coco_schema import COCO_SCHEMA
>>> import jsonschema
>>> dset = kwcoco.CocoDataset.demo('shapes1')
>>> # print('dset.dataset = {}'.format(ub.urepr(dset.dataset, nl=2)))
>>> COCO_SCHEMA.validate(dset.dataset)
>>> try:
>>> jsonschema.validate(dset.dataset, schema=COCO_SCHEMA)
>>> except jsonschema.exceptions.ValidationError as ex:
>>> vali_ex = ex
>>> print('ex = {!r}'.format(ex))
>>> raise
>>> except jsonschema.exceptions.SchemaError as ex:
>>> print('ex = {!r}'.format(ex))
>>> schema_ex = ex
>>> print('schema_ex.instance = {}'.format(ub.urepr(schema_ex.instance, nl=-1)))
>>> raise
>>> # Test the multispectral image defintino
>>> import copy
>>> dataset = dset.copy().dataset
>>> img = dataset['images'][0]
>>> img.pop('file_name')
>>> import pytest
>>> with pytest.raises(jsonschema.ValidationError):
>>> COCO_SCHEMA.validate(dataset)
>>> import pytest
>>> img['auxiliary'] = [{'file_name': 'foobar'}]
>>> with pytest.raises(jsonschema.ValidationError):
>>> COCO_SCHEMA.validate(dataset)
>>> img['name'] = 'asset-only images must have a name'
>>> COCO_SCHEMA.validate(dataset)
kwcoco.coco_sql_dataset module¶
Todo
- [ ] We get better speeds with raw SQL over alchemy. Can we mitigate the
speed difference so we can take advantage of alchemy’s expressiveness?
Finally got a baseline implementation of an SQLite backend for COCO datasets. This mostly plugs into my existing tools (as long as only read operations are used; haven’t impelmented writing yet) by duck-typing the dict API.
This solves the issue of forking and then accessing nested dictionaries in the JSON-style COCO objects. (When you access the dictionary Python will increment a reference count which triggers copy-on-write for whatever memory page that data happened to live in. Non-contiguous access had the effect of excessive memory copies).
For “medium sized” datasets its quite a bit slower. Running through a torch DataLoader with 4 workers for 10,000 images executes at a rate of 100Hz but takes 850MB of RAM. Using the duck-typed SQL backend only uses 500MB (which includes the cost of caching), but runs at 45Hz (which includes the benefit of caching).
However, once I scale up to 100,000 images I start seeing benefits. The in-memory dictionary interface chugs at 1.05HZ, and is taking more than 4GB of memory at the time I killed the process (eta was over an hour). The SQL backend ran at 45Hz and took about 3 minutes and used about 2.45GB of memory.
Without a cache, SQL runs at 30HZ and takes 400MB for 10,000 images, and for 100,000 images it gets 30Hz with 1.1GB. There is also a much larger startup time. I’m not exactly sure what it is yet, but its probably some preprocessing I’m doing.
Using a LRU cache we get 45Hz and 1.05GB of memory, so that’s a clear win. We do need to be sure to disable the cache if we ever implement write mode.
I’d like to be a bit faster on the medium sized datasets (I’d really like to avoid caching rows, which is why the speed is currently semi-reasonable), but I don’t think I can do any better than this because single-row lookup time is O(log(N)) for sqlite, whereas its O(1) for dictionaries. (I wish sqlite had an option to create a hash-table index for a table, but I dont think it does). I optimized as many of the dictionary operations as possible (for instance, iterating through keys, values, and items should be O(N) instead of O(N log(N))), but the majority of the runtime cost is in the single-row lookup time.
There are a few questions I still have if anyone has insight:
Say I want to select a subset of K rows from a table with N entries, and I have a list of all of the rowids that I want. Is there any way to do this better than
O(K log(N))
? I tried using aSELECT col FROM table WHERE id IN (?, ?, ?, ?, ...)
filling in enough ? as there are rows in my subset. I’m not sure what the complexity of using a query like this is. I’m not sure what the IN implementation looks like. Can this be done more efficiently by with a temporary table and aJOIN
?There really is no way to do
O(1)
row lookup in sqlite right? Is there a way in PostgreSQL or some other backend sqlalchemy supports?
I found that PostgreSQL does support hash indexes: https://www.postgresql.org/docs/13/indexes-types.html I’m really not interested in setting up a global service though 😞. I also found a 10-year old thread with a hash-index feature request for SQLite, which I unabashedly resurrected http://sqlite.1065341.n5.nabble.com/Feature-request-hash-index-td23367.html https://web.archive.org/web/20210326010915/http://sqlite.1065341.n5.nabble.com/Feature-request-hash-index-td23367.html
- class kwcoco.coco_sql_dataset.Category(**kwargs)[source]¶
Bases:
Base
A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in
kwargs
.Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any mapped columns or relationships.
- id¶
unique internal id
- name¶
unique external name or identifier
- alias¶
list of alter egos
- supercategory¶
coarser category name
- _unstructured¶
- _sa_class_manager = {'_unstructured': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'alias': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'id': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'name': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'supercategory': <sqlalchemy.orm.attributes.InstrumentedAttribute object>}¶
- class kwcoco.coco_sql_dataset.KeypointCategory(**kwargs)[source]¶
Bases:
Base
A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in
kwargs
.Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any mapped columns or relationships.
- id¶
unique internal id
- name¶
unique external name or identifier
- alias¶
list of alter egos
- supercategory¶
coarser category name
- reflection_id¶
if augmentation reflects the image, change keypoint id to this
- _unstructured¶
- _sa_class_manager = {'_unstructured': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'alias': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'id': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'name': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'reflection_id': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'supercategory': <sqlalchemy.orm.attributes.InstrumentedAttribute object>}¶
- class kwcoco.coco_sql_dataset.Video(**kwargs)[source]¶
Bases:
Base
A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in
kwargs
.Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any mapped columns or relationships.
- id¶
unique internal id
- name¶
- caption¶
- width¶
- height¶
- _unstructured¶
- _sa_class_manager = {'_unstructured': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'caption': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'height': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'id': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'name': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'width': <sqlalchemy.orm.attributes.InstrumentedAttribute object>}¶
- class kwcoco.coco_sql_dataset.Image(**kwargs)[source]¶
Bases:
Base
A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in
kwargs
.Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any mapped columns or relationships.
- id¶
unique internal id
- name¶
- file_name¶
- width¶
- height¶
- video_id¶
- timestamp¶
- frame_index¶
- channels¶
See ChannelSpec
- warp_img_to_vid¶
See TransformSpec
- auxiliary¶
- _unstructured¶
- _sa_class_manager = {'_unstructured': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'auxiliary': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'channels': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'file_name': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'frame_index': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'height': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'id': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'name': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'timestamp': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'video_id': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'warp_img_to_vid': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'width': <sqlalchemy.orm.attributes.InstrumentedAttribute object>}¶
- class kwcoco.coco_sql_dataset.Annotation(**kwargs)[source]¶
Bases:
Base
A simple constructor that allows initialization from kwargs.
Sets attributes on the constructed instance using the names and values in
kwargs
.Only keys that are present as attributes of the instance’s class are allowed. These could be, for example, any mapped columns or relationships.
- id¶
- image_id¶
- category_id¶
- track_id¶
- segmentation¶
- keypoints¶
- bbox¶
- _bbox_x¶
- _bbox_y¶
- _bbox_w¶
- _bbox_h¶
- score¶
- weight¶
- prob¶
- iscrowd¶
- caption¶
- _unstructured¶
- _sa_class_manager = {'_bbox_h': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, '_bbox_w': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, '_bbox_x': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, '_bbox_y': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, '_unstructured': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'bbox': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'caption': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'category_id': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'id': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'image_id': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'iscrowd': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'keypoints': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'prob': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'score': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'segmentation': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'track_id': <sqlalchemy.orm.attributes.InstrumentedAttribute object>, 'weight': <sqlalchemy.orm.attributes.InstrumentedAttribute object>}¶
- kwcoco.coco_sql_dataset.dict_restructure(item)[source]¶
Removes the unstructured field so the API is transparent to the user.
- kwcoco.coco_sql_dataset._orm_yielder(query, size=300)[source]¶
TODO: figure out the best way to yield, in batches or otherwise
- kwcoco.coco_sql_dataset._raw_yielder(result, size=300)[source]¶
TODO: figure out the best way to yield, in batches or otherwise
- class kwcoco.coco_sql_dataset.SqlListProxy(session, cls)[source]¶
Bases:
NiceRepr
A view of an SQL table that behaves like a Python list
- class kwcoco.coco_sql_dataset.SqlDictProxy(session, cls, keyattr=None, ignore_null=False)[source]¶
Bases:
DictLike
Duck-types an SQL table as a dictionary of dictionaries.
The key is specified by an indexed column (by default it is the id column). The values are dictionaries containing all data for that row.
Note
With SQLite indexes are B-Trees so lookup is O(log(N)) and not O(1) as will regular dictionaries. Iteration should still be O(N), but databases have much more overhead than Python dictionaries.
- Parameters
session (sqlalchemy.orm.session.Session) – the sqlalchemy session
cls (Type) – the declarative sqlalchemy table class
keyattr (Column) – the indexed column to use as the keys
ignore_null (bool) – if True, ignores any keys set to NULL, otherwise NULL keys are allowed.
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> import pytest >>> sql_dset, dct_dset = demo(num=10) >>> proxy = sql_dset.index.anns
>>> keys = list(proxy.keys()) >>> values = list(proxy.values()) >>> items = list(proxy.items()) >>> item_keys = [t[0] for t in items] >>> item_vals = [t[1] for t in items] >>> lut_vals = [proxy[key] for key in keys] >>> assert item_vals == lut_vals == values >>> assert item_keys == keys >>> assert len(proxy) == len(keys)
>>> goodkey1 = keys[1] >>> badkey1 = -100000000000 >>> badkey2 = 'foobarbazbiz' >>> assert goodkey1 in proxy >>> assert badkey1 not in proxy >>> assert badkey2 not in proxy >>> with pytest.raises(KeyError): >>> proxy[badkey1] >>> with pytest.raises(KeyError): >>> proxy[badkey2] >>> badkey3 = object() >>> assert badkey3 not in proxy >>> with pytest.raises(KeyError): >>> proxy[badkey3]
>>> # xdoctest: +SKIP >>> from kwcoco.coco_sql_dataset import _benchmark_dict_proxy_ops >>> ti = _benchmark_dict_proxy_ops(proxy) >>> print('ti.measures = {}'.format(ub.urepr(ti.measures, nl=2, align=':', precision=6)))
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> import kwcoco >>> # Test the variant of the SqlDictProxy where we ignore None keys >>> # This is the case for name_to_img and file_name_to_img >>> dct_dset = kwcoco.CocoDataset.demo('shapes1') >>> dct_dset.add_image(name='no_file_image1') >>> dct_dset.add_image(name='no_file_image2') >>> dct_dset.add_image(name='no_file_image3') >>> sql_dset = dct_dset.view_sql(memory=True) >>> assert len(dct_dset.index.imgs) == 4 >>> assert len(dct_dset.index.file_name_to_img) == 1 >>> assert len(dct_dset.index.name_to_img) == 3 >>> assert len(sql_dset.index.imgs) == 4 >>> assert len(sql_dset.index.file_name_to_img) == 1 >>> assert len(sql_dset.index.name_to_img) == 3
>>> proxy = sql_dset.index.file_name_to_img >>> assert len(list(proxy.keys())) == 1 >>> assert len(list(proxy.values())) == 1
>>> proxy = sql_dset.index.name_to_img >>> assert len(list(proxy.keys())) == 3 >>> assert len(list(proxy.values())) == 3
>>> proxy = sql_dset.index.imgs >>> assert len(list(proxy.keys())) == 4 >>> assert len(list(proxy.values())) == 4
- class kwcoco.coco_sql_dataset.SqlIdGroupDictProxy(session, valattr, keyattr, parent_keyattr=None, order_attr=None, order_id=None)[source]¶
Bases:
DictLike
Similar to
SqlDictProxy
, but maps ids to groups of other ids.Simulates a dictionary that maps ids of a parent table to all ids of another table corresponding to rows where a specific column has that parent id.
The items in the group can be sorted by the
order_attr
if specified. Theorder_attr
can belong to another table ifparent_order_id
andself_order_id
are specified.For example, imagine two tables: images with one column (id) and annotations with two columns (id, image_id). This class can help provide a mpaping from each image.id to a Set[annotation.id] where those annotation rows have annotation.image_id = image.id.
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> sql_dset, dct_dset = demo(num=10) >>> proxy = sql_dset.index.gid_to_aids
>>> keys = list(proxy.keys()) >>> values = list(proxy.values()) >>> items = list(proxy.items()) >>> item_keys = [t[0] for t in items] >>> item_vals = [t[1] for t in items] >>> lut_vals = [proxy[key] for key in keys] >>> assert item_vals == lut_vals == values >>> assert item_keys == keys >>> assert len(proxy) == len(keys)
>>> # xdoctest: +SKIP >>> from kwcoco.coco_sql_dataset import _benchmark_dict_proxy_ops >>> ti = _benchmark_dict_proxy_ops(proxy) >>> print('ti.measures = {}'.format(ub.urepr(ti.measures, nl=2, align=':', precision=6)))
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> import kwcoco >>> # Test the group sorted variant of this by using vidid_to_gids >>> # where the "gids" must be sorted by the image frame indexes >>> dct_dset = kwcoco.CocoDataset.demo('vidshapes1') >>> dct_dset.add_image(name='frame-index-order-demo1', frame_index=-30, video_id=1) >>> dct_dset.add_image(name='frame-index-order-demo2', frame_index=10, video_id=1) >>> dct_dset.add_image(name='frame-index-order-demo3', frame_index=3, video_id=1) >>> dct_dset.add_video(name='empty-video1') >>> dct_dset.add_video(name='empty-video2') >>> dct_dset.add_video(name='empty-video3') >>> sql_dset = dct_dset.view_sql(memory=True) >>> orig = dct_dset.index.vidid_to_gids >>> proxy = sql_dset.index.vidid_to_gids >>> from kwcoco.util.util_json import indexable_allclose >>> assert indexable_allclose(orig, dict(proxy)) >>> items = list(proxy.items()) >>> vals = list(proxy.values()) >>> keys = list(proxy.keys()) >>> assert len(keys) == len(vals) >>> assert dict(zip(keys, vals)) == dict(items)
- Parameters
session (sqlalchemy.orm.session.Session) – the sqlalchemy session
valattr (InstrumentedAttribute) – The column to lookup as a value
keyattr (InstrumentedAttribute) – The column to use as a key
parent_keyattr (InstrumentedAttribute | None) – The column of the table corresponding to the key. If unspecified the column in the indexed table is used which may be less efficient.
order_attr (InstrumentedAttribute | None) – This is the attribute that the returned results will be ordered by
order_id (InstrumentedAttribute | None) – if order_attr belongs to another table, then this must be a column of the value table that corresponds to the primary key of the table used for ordering (e.g. when ordering annotations by image frame index, this must be the annotation image id)
- class kwcoco.coco_sql_dataset.CocoSqlIndex[source]¶
Bases:
object
Simulates the dictionary provided by
kwcoco.coco_dataset.CocoIndex
- kwcoco.coco_sql_dataset._handle_sql_uri(uri)[source]¶
Temporary function to deal with URI. Modern tools seem to use RFC 3968 URIs, but sqlalchemy uses RFC 1738. Attempt to gracefully handle special cases. With a better understanding of the above specs, this function may be able to be written more eloquently.
- class kwcoco.coco_sql_dataset.CocoSqlDatabase(uri=None, tag=None, img_root=None)[source]¶
Bases:
AbstractCocoDataset
,MixinCocoAccessors
,MixinCocoObjects
,MixinCocoStats
,MixinCocoDraw
,NiceRepr
Provides an API nearly identical to
kwcoco.CocoDatabase
, but uses an SQL backend data store. This makes it robust to copy-on-write memory issues that arise when forking, as discussed in 1.Note
By default constructing an instance of the CocoSqlDatabase does not create a connection to the databse. Use the
connect()
method to open a connection.References
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> sql_dset, dct_dset = demo() >>> dset1, dset2 = sql_dset, dct_dset >>> tag1, tag2 = 'dset1', 'dset2' >>> assert_dsets_allclose(sql_dset, dct_dset)
- MEMORY_URI = 'sqlite:///:memory:'¶
- classmethod coerce(data, backend=None)[source]¶
Create an SQL CocoDataset from the input pointer.
Example
import kwcoco dset = kwcoco.CocoDataset.demo(‘shapes8’) data = dset.fpath self = CocoSqlDatabase.coerce(data)
from kwcoco.coco_sql_dataset import CocoSqlDatabase import kwcoco dset = kwcoco.CocoDataset.coerce(‘spacenet7.kwcoco.json’)
self = CocoSqlDatabase.coerce(dset)
from kwcoco.coco_sql_dataset import CocoSqlDatabase sql_dset = CocoSqlDatabase.coerce(‘spacenet7.kwcoco.json’)
# from kwcoco.coco_sql_dataset import CocoSqlDatabase import kwcoco sql_dset = kwcoco.CocoDataset.coerce(‘_spacenet7.kwcoco.view.v006.sqlite’)
- connect(readonly=False, verbose=0)[source]¶
Connects this instance to the underlying database.
References
# details on read only mode, some of these didnt seem to work https://github.com/sqlalchemy/sqlalchemy/blob/master/lib/sqlalchemy/dialects/sqlite/pysqlite.py#L71 https://github.com/pudo/dataset/issues/136 https://writeonly.wordpress.com/2009/07/16/simple-read-only-sqlalchemy-sessions/
CommandLine
KWCOCO_WITH_POSTGRESQL=1 xdoctest -m /home/joncrall/code/kwcoco/kwcoco/coco_sql_dataset.py CocoSqlDatabase.connect
Example
>>> # xdoctest: +REQUIRES(env:KWCOCO_WITH_POSTGRESQL) >>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> # xdoctest: +REQUIRES(module:psycopg2) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> dset = CocoSqlDatabase('postgresql+psycopg2://kwcoco:kwcoco_pw@localhost:5432/mydb') >>> self = dset >>> dset.connect(verbose=1)
- property fpath¶
- populate_from(dset, verbose=1)[source]¶
Copy the information in a
CocoDataset
into this SQL database.Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import _benchmark_dset_readtime # NOQA >>> import kwcoco >>> from kwcoco.coco_sql_dataset import * >>> dset2 = dset = kwcoco.CocoDataset.demo() >>> dset2.clear_annotations() >>> dset1 = self = CocoSqlDatabase('sqlite:///:memory:') >>> self.connect() >>> self.populate_from(dset) >>> dset1_images = list(dset1.dataset['images']) >>> print('dset1_images = {}'.format(ub.urepr(dset1_images, nl=1))) >>> print(dset2.dumps(newlines=True)) >>> assert_dsets_allclose(dset1, dset2, tag1='sql', tag2='dct') >>> ti_sql = _benchmark_dset_readtime(dset1, 'sql') >>> ti_dct = _benchmark_dset_readtime(dset2, 'dct') >>> print('ti_sql.rankings = {}'.format(ub.urepr(ti_sql.rankings, nl=2, precision=6, align=':'))) >>> print('ti_dct.rankings = {}'.format(ub.urepr(ti_dct.rankings, nl=2, precision=6, align=':')))
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import _benchmark_dset_readtime # NOQA >>> import kwcoco >>> from kwcoco.coco_sql_dataset import * >>> dset2 = dset = kwcoco.CocoDataset.demo() >>> dset1 = self = CocoSqlDatabase('sqlite:///:memory:') >>> self.connect() >>> self.populate_from(dset) >>> assert_dsets_allclose(dset1, dset2, tag1='sql', tag2='dct') >>> ti_sql = _benchmark_dset_readtime(dset1, 'sql') >>> ti_dct = _benchmark_dset_readtime(dset2, 'dct') >>> print('ti_sql.rankings = {}'.format(ub.urepr(ti_sql.rankings, nl=2, precision=6, align=':'))) >>> print('ti_dct.rankings = {}'.format(ub.urepr(ti_dct.rankings, nl=2, precision=6, align=':')))
CommandLine
KWCOCO_WITH_POSTGRESQL=1 xdoctest -m /home/joncrall/code/kwcoco/kwcoco/coco_sql_dataset.py CocoSqlDatabase.populate_from:1
Example
>>> # xdoctest: +REQUIRES(env:KWCOCO_WITH_POSTGRESQL) >>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> # xdoctest: +REQUIRES(module:psycopg2) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> import kwcoco >>> dset = dset2 = kwcoco.CocoDataset.demo() >>> self = dset1 = CocoSqlDatabase('postgresql+psycopg2://kwcoco:kwcoco_pw@localhost:5432/test_populate') >>> self.delete(verbose=1) >>> self.connect(verbose=1) >>> #self.populate_from(dset)
- property dataset¶
- property anns¶
- property cats¶
- property imgs¶
- property name_to_cat¶
- pandas_table(table_name, strict=False)[source]¶
Loads an entire SQL table as a pandas DataFrame
- Parameters
table_name (str) – name of the table
- Returns
pandas.DataFrame
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> self, dset = demo() >>> table_df = self.pandas_table('annotations') >>> print(table_df)
- _raw_tables()[source]¶
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> import pandas as pd >>> self, dset = demo() >>> targets = self._raw_tables() >>> for tblname, table in targets.items(): ... print(f'tblname={tblname}') ... print(pd.DataFrame(table))
- _column_lookup(tablename, key, rowids, default=NoParam, keepid=False)[source]¶
Convinience method to lookup only a single column of information
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> self, dset = demo(10) >>> tablename = 'annotations' >>> key = 'category_id' >>> rowids = list(self.anns.keys())[::3] >>> cids1 = self._column_lookup(tablename, key, rowids) >>> cids2 = self.annots(rowids).get(key) >>> cids3 = dset.annots(rowids).get(key) >>> assert cids3 == cids2 == cids1 >>> # Test json columns work >>> vals1 = self._column_lookup(tablename, 'bbox', rowids) >>> vals2 = self.annots(rowids).lookup('bbox') >>> vals3 = dset.annots(rowids).lookup('bbox') >>> assert vals1 == vals2 == vals3 >>> vals1 = self._column_lookup(tablename, 'segmentation', rowids) >>> vals2 = self.annots(rowids).lookup('segmentation') >>> vals3 = dset.annots(rowids).lookup('segmentation') >>> assert vals1 == vals2 == vals3
- _all_rows_column_lookup(tablename, keys)[source]¶
Convinience method to look up all rows from a table and only a few columns.
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> self, dset = demo(10) >>> tablename = 'annotations' >>> keys = ['id', 'category_id'] >>> rows = self._all_rows_column_lookup(tablename, keys)
- tabular_targets()[source]¶
Convinience method to create an in-memory summary of basic annotation properties with minimal SQL overhead.
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> self, dset = demo() >>> targets = self.tabular_targets() >>> print(targets.pandas())
- property bundle_dpath¶
- property data_fpath¶
data_fpath is an alias of fpath
- _orig_coco_fpath()[source]¶
Hack to reconstruct the original name. Makes assumptions about how naming is handled elsewhere. There should be centralized logic about how to construct side-car names that can be queried for inversed like this.
- _abc_impl = <_abc_data object>¶
- kwcoco.coco_sql_dataset.cached_sql_coco_view(dct_db_fpath=None, sql_db_fpath=None, dset=None, force_rewrite=False, backend=None)[source]¶
Attempts to load a cached SQL-View dataset, only loading and converting the json dataset if necessary.
- kwcoco.coco_sql_dataset.ensure_sql_coco_view(dset, db_fpath=None, force_rewrite=False, backend=None)[source]¶
Create a cached on-disk SQL view of an on-disk COCO dataset.
# DEPREICATE, use cache function instead
Note
This function is fragile. It depends on looking at file modified timestamps to determine if it needs to write the dataset.
- kwcoco.coco_sql_dataset._benchmark_dset_readtime(dset, tag='?', n=4, post_iterate=False)[source]¶
Helper for understanding the time differences between backends
Note
post_iterate ensures that all of the returned data is looked at by the python interpreter. Makes this a more fair comparison because python can just return pointers to the data, but only in the case where most of the data will touched. For one attribute lookups it is not a good test.
kwcoco.compat_dataset module¶
A wrapper around the basic kwcoco dataset with a pycocotools API.
We do not recommend using this API because it has some idiosyncrasies, where names can be missleading and APIs are not always clear / efficient: e.g.
catToImgs returns integer image ids but imgToAnns returns annotation dictionaries.
showAnns takes a dictionary list as an argument instead of an integer list
The cool thing is that this extends the kwcoco API so you can drop this for compatibility with the old API, but you still get access to all of the kwcoco API including dynamic addition / removal of categories / annotations / images.
- class kwcoco.compat_dataset.COCO(annotation_file=None, **kw)[source]¶
Bases:
CocoDataset
A wrapper around the basic kwcoco dataset with a pycocotools API.
Example
>>> from kwcoco.compat_dataset import * # NOQA >>> import kwcoco >>> basic = kwcoco.CocoDataset.demo('shapes8') >>> self = COCO(basic.dataset) >>> self.info() >>> print('self.imgToAnns = {!r}'.format(self.imgToAnns[1])) >>> print('self.catToImgs = {!r}'.format(self.catToImgs))
- property imgToAnns¶
- property catToImgs¶
unlike the name implies, this actually goes from category to image ids Name retained for backward compatibility
- getAnnIds(imgIds=[], catIds=[], areaRng=[], iscrowd=None)[source]¶
Get ann ids that satisfy given filter conditions. default skips that filter
- Parameters
imgIds (List[int]) – get anns for given imgs
catIds (List[int]) – get anns for given cats
areaRng (List[float]) – get anns for given area range (e.g. [0 inf])
iscrowd (bool | None) – get anns for given crowd label (False or True)
- Returns
integer array of ann ids
- Return type
List[int]
Example
>>> from kwcoco.compat_dataset import * # NOQA >>> import kwcoco >>> self = COCO(kwcoco.CocoDataset.demo('shapes8').dataset) >>> self.getAnnIds() >>> self.getAnnIds(imgIds=1) >>> self.getAnnIds(imgIds=[1]) >>> self.getAnnIds(catIds=[3])
- getCatIds(catNms=[], supNms=[], catIds=[])[source]¶
filtering parameters. default skips that filter.
- Parameters
catNms (List[str]) – get cats for given cat names
supNms (List[str]) – get cats for given supercategory names
catIds (List[int]) – get cats for given cat ids
- Returns
integer array of cat ids
- Return type
List[int]
Example
>>> from kwcoco.compat_dataset import * # NOQA >>> import kwcoco >>> self = COCO(kwcoco.CocoDataset.demo('shapes8').dataset) >>> self.getCatIds() >>> self.getCatIds(catNms=['superstar']) >>> self.getCatIds(supNms=['raster']) >>> self.getCatIds(catIds=[3])
- getImgIds(imgIds=[], catIds=[])[source]¶
Get img ids that satisfy given filter conditions.
- Parameters
imgIds (List[int]) – get imgs for given ids
catIds (List[int]) – get imgs with all given cats
- Returns
integer array of img ids
- Return type
List[int]
Example
>>> from kwcoco.compat_dataset import * # NOQA >>> import kwcoco >>> self = COCO(kwcoco.CocoDataset.demo('shapes8').dataset) >>> self.getImgIds(imgIds=[1, 2]) >>> self.getImgIds(catIds=[3, 6, 7]) >>> self.getImgIds(catIds=[3, 6, 7], imgIds=[1, 2])
- loadAnns(ids=[])[source]¶
Load anns with the specified ids.
- Parameters
ids (List[int]) – integer ids specifying anns
- Returns
loaded ann objects
- Return type
List[dict]
- loadCats(ids=[])[source]¶
Load cats with the specified ids.
- Parameters
ids (List[int]) – integer ids specifying cats
- Returns
loaded cat objects
- Return type
List[dict]
- loadImgs(ids=[])[source]¶
Load anns with the specified ids.
- Parameters
ids (List[int]) – integer ids specifying img
- Returns
loaded img objects
- Return type
List[dict]
- showAnns(anns, draw_bbox=False)[source]¶
Display the specified annotations.
- Parameters
anns (List[Dict]) – annotations to display
- loadRes(resFile)[source]¶
Load result file and return a result api object.
- Parameters
resFile (str) – file name of result file
- Returns
res result api object
- Return type
- download(tarDir=None, imgIds=[])[source]¶
Download COCO images from mscoco.org server.
- Parameters
tarDir (str | PathLike | None) – COCO results directory name
imgIds (list) – images to be downloaded
- loadNumpyAnnotations(data)[source]¶
Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class}
- Parameters
data (numpy.ndarray)
- Returns
annotations (python nested list)
- Return type
List[Dict]
- annToRLE(ann)[source]¶
Convert annotation which can be polygons, uncompressed RLE to RLE.
- Returns
kwimage.Mask
Note
This requires the C-extensions for kwimage to be installed (i.e.
pip install kwimage_ext
) due to the need to interface with the bytes RLE format.Example
>>> from kwcoco.compat_dataset import * # NOQA >>> import kwcoco >>> self = COCO(kwcoco.CocoDataset.demo('shapes8').dataset) >>> try: >>> rle = self.annToRLE(self.anns[1]) >>> except NotImplementedError: >>> import pytest >>> pytest.skip('missing kwimage c-extensions') >>> else: >>> assert len(rle['counts']) > 2 >>> # xdoctest: +REQUIRES(module:pycocotools) >>> self.conform(legacy=True) >>> orig = self._aspycoco().annToRLE(self.anns[1])
- annToMask(ann)[source]¶
Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask.
- Returns
binary mask (numpy 2D array)
- Return type
ndarray
Note
The mask is returned as a fortran (F-style) array with the same dimensions as the parent image.
- _abc_impl = <_abc_data object>¶
kwcoco.exceptions module¶
- exception kwcoco.exceptions.AddError[source]¶
Bases:
ValueError
Generic error when trying to add a category/annotation/image
- exception kwcoco.exceptions.DuplicateAddError[source]¶
Bases:
ValueError
Error when trying to add a duplicate item
- exception kwcoco.exceptions.InvalidAddError[source]¶
Bases:
ValueError
Error when trying to invalid data
kwcoco.kpf module¶
WIP:
Conversions to and from KPF format.
kwcoco.kw18 module¶
A helper for converting COCO to / from KW18 format.
KW18 File Format https://docs.google.com/spreadsheets/d/1DFCwoTKnDv8qfy3raM7QXtir2Fjfj9j8-z8px5Bu0q8/edit#gid=10
The kw18.trk files are text files, space delimited; each row is one frame of one track and all rows have the same number of columns. The fields are:
01) track_ID : identifies the track
02) num_frames: number of frames in the track
03) frame_id : frame number for this track sample
04) loc_x : X-coordinate of the track (image/ground coords)
05) loc_y : Y-coordinate of the track (image/ground coords)
06) vel_x : X-velocity of the object (image/ground coords)
07) vel_y : Y-velocity of the object (image/ground coords)
08) obj_loc_x : X-coordinate of the object (image coords)
09) obj_loc_y : Y-coordinate of the object (image coords)
10) bbox_min_x : minimum X-coordinate of bounding box (image coords)
11) bbox_min_y : minimum Y-coordinate of bounding box (image coords)
12) bbox_max_x : maximum X-coordinate of bounding box (image coords)
13) bbox_max_y : maximum Y-coordinate of bounding box (image coords)
14) area : area of object (pixels)
15) world_loc_x : X-coordinate of object in world
16) world_loc_y : Y-coordinate of object in world
17) world_loc_z : Z-coordiante of object in world
18) timestamp : timestamp of frame (frames)
For the location and velocity of object centroids, use fields 4-7.
Bounding box is specified using coordinates of the top-left and bottom
right corners. Fields 15-17 may be ignored.
The kw19.trk and kw20.trk files, when present, add the following field(s):
19) object class: estimated class of the object, either 1 (person), 2
(vehicle), or 3 (other).
20) Activity ID -- refer to activities.txt for index and list of activities.
- class kwcoco.kw18.KW18(data)[source]¶
Bases:
DataFrameArray
A DataFrame like object that stores KW18 column data
Example
>>> import kwcoco >>> from kwcoco.kw18 import KW18 >>> coco_dset = kwcoco.CocoDataset.demo('shapes') >>> kw18_dset = KW18.from_coco(coco_dset) >>> print(kw18_dset.pandas())
- Parameters
data – the kw18 data frame.
- DEFAULT_COLUMNS = ['track_id', 'track_length', 'frame_number', 'tracking_plane_loc_x', 'tracking_plane_loc_y', 'velocity_x', 'velocity_y', 'image_loc_x', 'image_loc_y', 'img_bbox_tl_x', 'img_bbox_tl_y', 'img_bbox_br_x', 'img_bbox_br_y', 'area', 'world_loc_x', 'world_loc_y', 'world_loc_z', 'timestamp', 'confidence', 'object_type_id', 'activity_type_id']¶
- to_coco(image_paths=None, video_name=None)[source]¶
Translates a kw18 files to a CocoDataset.
Note
kw18 does not contain complete information, and as such the returned coco dataset may need to be augmented.
- Parameters
image_paths (Dict[int, str] | None) – if specified, maps frame numbers to image file paths.
video_name (str | None) – if specified records the name of the video this kw18 belongs to
Todo
[X] allow kwargs to specify path to frames / videos
Example
>>> from kwcoco.kw18 import KW18 >>> import ubelt as ub >>> import kwimage >>> import kwcoco >>> # Prep test data - autogen a demo kw18 and write it to disk >>> dpath = ub.Path.appdir('kwcoco/kw18').ensuredir() >>> kw18_fpath = ub.Path(dpath) / 'test.kw18' >>> KW18.demo().dump(kw18_fpath) >>> # >>> # Load the kw18 file >>> self = KW18.load(kw18_fpath) >>> # Pretend that these image correspond to kw18 frame numbers >>> frame_names= kwcoco.CocoDataset.demo('shapes8').images().lookup('file_name') >>> frame_ids = sorted(set(self['frame_number'])) >>> image_paths = dict(zip(frame_ids, frame_names)) >>> # >>> # Convert the kw18 to kwcoco and specify paths to images >>> coco_dset = self.to_coco(image_paths=image_paths, video_name='dummy.mp4') >>> # >>> # Now we can draw images >>> canvas = coco_dset.draw_image(1) >>> # xdoctest: +REQUIRES(--draw) >>> kwimage.imwrite('foo.jpg', canvas) >>> # Draw all iamges >>> for gid in coco_dset.imgs.keys(): >>> canvas = coco_dset.draw_image(gid) >>> fpath = dpath / 'gid_{}.jpg'.format(gid) >>> print('write fpath = {!r}'.format(fpath)) >>> kwimage.imwrite(fpath, canvas)
- classmethod load(file)[source]¶
Example
>>> import kwcoco >>> from kwcoco.kw18 import KW18 >>> coco_dset = kwcoco.CocoDataset.demo('shapes') >>> kw18_dset = KW18.from_coco(coco_dset) >>> print(kw18_dset.pandas())
- kwcoco.kw18._ensure_kw18_column_order(df)[source]¶
Ensure expected kw18 columns exist and are in the correct order.
Example
>>> import pandas as pd >>> df = pd.DataFrame(columns=KW18.DEFAULT_COLUMNS[0:18]) >>> _ensure_kw18_column_order(df) >>> df = pd.DataFrame(columns=KW18.DEFAULT_COLUMNS[0:19]) >>> _ensure_kw18_column_order(df) >>> df = pd.DataFrame(columns=KW18.DEFAULT_COLUMNS[0:18] + KW18.DEFAULT_COLUMNS[20:21]) >>> assert np.all(_ensure_kw18_column_order(df).columns == df.columns)
kwcoco.sensorchan_spec module¶
This functionality has been moved to “delayed_image”
Module contents¶
The Kitware COCO module defines a variant of the Microsoft COCO format, originally developed for the “collected images in context” object detection challenge. We are backwards compatible with the original module, but we also have improved implementations in several places, including segmentations, keypoints, annotation tracks, multi-spectral images, and videos (which represents a generic sequence of images).
A kwcoco file is a “manifest” that serves as a single reference that points to all images, categories, and annotations in a computer vision dataset. Thus, when applying an algorithm to a dataset, it is sufficient to have the algorithm take one dataset parameter: the path to the kwcoco file. Generally a kwcoco file will live in a “bundle” directory along with the data that it references, and paths in the kwcoco file will be relative to the location of the kwcoco file itself.
The main data structure in this model is largely based on the implementation in https://github.com/cocodataset/cocoapi It uses the same efficient core indexing data structures, but in our implementation the indexing can be optionally turned off, functions are silent by default (with the exception of long running processes, which optionally show progress by default). We support helper functions that add and remove images, categories, and annotations.
The kwcoco.CocoDataset
class is capable of dynamic addition and removal
of categories, images, and annotations. Has better support for keypoints and
segmentation formats than the original COCO format. Despite being written in
Python, this data structure is reasonably efficient.
>>> import kwcoco
>>> import json
>>> # Create demo data
>>> demo = kwcoco.CocoDataset.demo()
>>> # Reroot can switch between absolute / relative-paths
>>> demo.reroot(absolute=True)
>>> # could also use demo.dump / demo.dumps, but this is more explicit
>>> text = json.dumps(demo.dataset)
>>> with open('demo.json', 'w') as file:
>>> file.write(text)
>>> # Read from disk
>>> self = kwcoco.CocoDataset('demo.json')
>>> # Add data
>>> cid = self.add_category('Cat')
>>> gid = self.add_image('new-img.jpg')
>>> aid = self.add_annotation(image_id=gid, category_id=cid, bbox=[0, 0, 100, 100])
>>> # Remove data
>>> self.remove_annotations([aid])
>>> self.remove_images([gid])
>>> self.remove_categories([cid])
>>> # Look at data
>>> import ubelt as ub
>>> print(ub.urepr(self.basic_stats(), nl=1))
>>> print(ub.urepr(self.extended_stats(), nl=2))
>>> print(ub.urepr(self.boxsize_stats(), nl=3))
>>> print(ub.urepr(self.category_annotation_frequency()))
>>> # Inspect data
>>> # xdoctest: +REQUIRES(module:kwplot)
>>> import kwplot
>>> kwplot.autompl()
>>> self.show_image(gid=1)
>>> # Access single-item data via imgs, cats, anns
>>> cid = 1
>>> self.cats[cid]
{'id': 1, 'name': 'astronaut', 'supercategory': 'human'}
>>> gid = 1
>>> self.imgs[gid]
{'id': 1, 'file_name': '...astro.png', 'url': 'https://i.imgur.com/KXhKM72.png'}
>>> aid = 3
>>> self.anns[aid]
{'id': 3, 'image_id': 1, 'category_id': 3, 'line': [326, 369, 500, 500]}
>>> # Access multi-item data via the annots and images helper objects
>>> aids = self.index.gid_to_aids[2]
>>> annots = self.annots(aids)
>>> print('annots = {}'.format(ub.urepr(annots, nl=1, sv=1)))
annots = <Annots(num=2)>
>>> annots.lookup('category_id')
[6, 4]
>>> annots.lookup('bbox')
[[37, 6, 230, 240], [124, 96, 45, 18]]
>>> # built in conversions to efficient kwimage array DataStructures
>>> print(ub.urepr(annots.detections.data, sv=1))
{
'boxes': <Boxes(xywh,
array([[ 37., 6., 230., 240.],
[124., 96., 45., 18.]], dtype=float32))>,
'class_idxs': [5, 3],
'keypoints': <PointsList(n=2)>,
'segmentations': <PolygonList(n=2)>,
}
>>> gids = list(self.imgs.keys())
>>> images = self.images(gids)
>>> print('images = {}'.format(ub.urepr(images, nl=1, sv=1)))
images = <Images(num=3)>
>>> images.lookup('file_name')
['...astro.png', '...carl.png', '...stars.png']
>>> print('images.annots = {}'.format(images.annots))
images.annots = <AnnotGroups(n=3, m=3.7, s=3.9)>
>>> print('images.annots.cids = {!r}'.format(images.annots.cids))
images.annots.cids = [[1, 2, 3, 4, 5, 5, 5, 5, 5], [6, 4], []]
CocoDataset API¶
The following is a logical grouping of the public kwcoco.CocoDataset API attributes and methods. See the in-code documentation for further details.
CocoDataset classmethods (via MixinCocoExtras)¶
kwcoco.CocoDataset.coerce
- Attempt to transform the input into the intended CocoDataset.
kwcoco.CocoDataset.demo
- Create a toy coco dataset for testing and demo puposes
kwcoco.CocoDataset.random
- Creates a random CocoDataset according to distribution parameters
CocoDataset classmethods (via CocoDataset)¶
kwcoco.CocoDataset.from_coco_paths
- Constructor from multiple coco file paths.
kwcoco.CocoDataset.from_data
- Constructor from a json dictionary
kwcoco.CocoDataset.from_image_paths
- Constructor from a list of images paths.
CocoDataset slots¶
kwcoco.CocoDataset.index
- an efficient lookup index into the coco data structure. The index defines its own attributes likeanns
,cats
,imgs
,gid_to_aids
,file_name_to_img
, etc. SeeCocoIndex
for more details on which attributes are available.
kwcoco.CocoDataset.hashid
- If computed, this will be a hash uniquely identifing the dataset. To ensure this is computed seekwcoco.coco_dataset.MixinCocoExtras._build_hashid()
.
kwcoco.CocoDataset.hashid_parts
-
kwcoco.CocoDataset.tag
- A tag indicating the name of the dataset.
kwcoco.CocoDataset.dataset
- raw json data structure. This is the base dictionary that contains {‘annotations’: List, ‘images’: List, ‘categories’: List}
kwcoco.CocoDataset.bundle_dpath
- If known, this is the root path that all image file names are relative to. This can also be manually overwritten by the user.
kwcoco.CocoDataset.assets_dpath
-
kwcoco.CocoDataset.cache_dpath
-
CocoDataset properties¶
kwcoco.CocoDataset.anns
-
kwcoco.CocoDataset.cats
-
kwcoco.CocoDataset.cid_to_aids
-
kwcoco.CocoDataset.data_fpath
-
kwcoco.CocoDataset.data_root
-
kwcoco.CocoDataset.fpath
- if known, this stores the filepath the dataset was loaded from
kwcoco.CocoDataset.gid_to_aids
-
kwcoco.CocoDataset.img_root
-
kwcoco.CocoDataset.imgs
-
kwcoco.CocoDataset.n_annots
-
kwcoco.CocoDataset.n_cats
-
kwcoco.CocoDataset.n_images
-
kwcoco.CocoDataset.n_videos
-
kwcoco.CocoDataset.name_to_cat
-
CocoDataset methods (via MixinCocoAddRemove)¶
kwcoco.CocoDataset.add_annotation
- Add an annotation to the dataset (dynamically updates the index)
kwcoco.CocoDataset.add_annotations
- Faster less-safe multi-item alternative to add_annotation.
kwcoco.CocoDataset.add_category
- Adds a category
kwcoco.CocoDataset.add_image
- Add an image to the dataset (dynamically updates the index)
kwcoco.CocoDataset.add_images
- Faster less-safe multi-item alternative
kwcoco.CocoDataset.add_video
- Add a video to the dataset (dynamically updates the index)
kwcoco.CocoDataset.clear_annotations
- Removes all annotations (but not images and categories)
kwcoco.CocoDataset.clear_images
- Removes all images and annotations (but not categories)
kwcoco.CocoDataset.ensure_category
- Likeadd_category()
, but returns the existing category id if it already exists instead of failing. In this case all metadata is ignored.
kwcoco.CocoDataset.ensure_image
- Likeadd_image()
,, but returns the existing image id if it already exists instead of failing. In this case all metadata is ignored.
kwcoco.CocoDataset.remove_annotation
- Remove a single annotation from the dataset
kwcoco.CocoDataset.remove_annotation_keypoints
- Removes all keypoints with a particular category
kwcoco.CocoDataset.remove_annotations
- Remove multiple annotations from the dataset.
kwcoco.CocoDataset.remove_categories
- Remove categories and all annotations in those categories. Currently does not change any hierarchy information
kwcoco.CocoDataset.remove_images
- Remove images and any annotations contained by them
kwcoco.CocoDataset.remove_keypoint_categories
- Removes all keypoints of a particular category as well as all annotation keypoints with those ids.
kwcoco.CocoDataset.remove_videos
- Remove videos and any images / annotations contained by them
kwcoco.CocoDataset.set_annotation_category
- Sets the category of a single annotation
CocoDataset methods (via MixinCocoObjects)¶
kwcoco.CocoDataset.annots
- Return vectorized annotation objects
kwcoco.CocoDataset.categories
- Return vectorized category objects
kwcoco.CocoDataset.images
- Return vectorized image objects
kwcoco.CocoDataset.videos
- Return vectorized video objects
CocoDataset methods (via MixinCocoStats)¶
kwcoco.CocoDataset.basic_stats
- Reports number of images, annotations, and categories.
kwcoco.CocoDataset.boxsize_stats
- Compute statistics about bounding box sizes.
kwcoco.CocoDataset.category_annotation_frequency
- Reports the number of annotations of each category
kwcoco.CocoDataset.category_annotation_type_frequency
- Reports the number of annotations of each type for each category
kwcoco.CocoDataset.conform
- Make the COCO file conform a stricter spec, infers attibutes where possible.
kwcoco.CocoDataset.extended_stats
- Reports number of images, annotations, and categories.
kwcoco.CocoDataset.find_representative_images
- Find images that have a wide array of categories. Attempt to find the fewest images that cover all categories using images that contain both a large and small number of annotations.
kwcoco.CocoDataset.keypoint_annotation_frequency
-
kwcoco.CocoDataset.stats
- This function corresponds tokwcoco.cli.coco_stats
.
kwcoco.CocoDataset.validate
- Performs checks on this coco dataset.
CocoDataset methods (via MixinCocoAccessors)¶
kwcoco.CocoDataset.category_graph
- Construct a networkx category hierarchy
kwcoco.CocoDataset.delayed_load
- Experimental method
kwcoco.CocoDataset.get_auxiliary_fpath
- Returns the full path to auxiliary data for an image
kwcoco.CocoDataset.get_image_fpath
- Returns the full path to the image
kwcoco.CocoDataset.keypoint_categories
- Construct a consistent CategoryTree representation of keypoint classes
kwcoco.CocoDataset.load_annot_sample
- Reads the chip of an annotation. Note this is much less efficient than using a sampler, but it doesn’t require disk cache.
kwcoco.CocoDataset.load_image
- Reads an image from disk and
kwcoco.CocoDataset.object_categories
- Construct a consistent CategoryTree representation of object classes
CocoDataset methods (via CocoDataset)¶
kwcoco.CocoDataset.copy
- Deep copies this object
kwcoco.CocoDataset.dump
- Writes the dataset out to the json format
kwcoco.CocoDataset.dumps
- Writes the dataset out to the json format
kwcoco.CocoDataset.subset
- Return a subset of the larger coco dataset by specifying which images to port. All annotations in those images will be taken.
kwcoco.CocoDataset.union
- Merges multipleCocoDataset
items into one. Names and associations are retained, but ids may be different.
kwcoco.CocoDataset.view_sql
- Create a cached SQL interface to this dataset suitable for large scale multiprocessing use cases.
CocoDataset methods (via MixinCocoExtras)¶
kwcoco.CocoDataset.corrupted_images
- Check for images that don’t exist or can’t be opened
kwcoco.CocoDataset.missing_images
- Check for images that don’t exist
kwcoco.CocoDataset.rename_categories
- Rename categories with a potentially coarser categorization.
kwcoco.CocoDataset.reroot
- Rebase image/data paths onto a new image/data root.
CocoDataset methods (via MixinCocoDraw)¶
kwcoco.CocoDataset.draw_image
- Use kwimage to draw all annotations on an image and return the pixels as a numpy array.
kwcoco.CocoDataset.imread
- Loads a particular image
kwcoco.CocoDataset.show_image
- Use matplotlib to show an image with annotations overlaid
- class kwcoco.AbstractCocoDataset[source]¶
Bases:
ABC
This is a common base for all variants of the Coco Dataset
At the time of writing there is kwcoco.CocoDataset (which is the dictionary-based backend), and the kwcoco.coco_sql_dataset.CocoSqlDataset, which is experimental.
- _abc_impl = <_abc_data object>¶
- class kwcoco.CategoryTree(graph=None, checks=True)[source]¶
Bases:
NiceRepr
Wrapper that maintains flat or hierarchical category information.
Helps compute softmaxes and probabilities for tree-based categories where a directed edge (A, B) represents that A is a superclass of B.
Note
There are three basic properties that this object maintains:
node: Alphanumeric string names that should be generally descriptive. Using spaces and special characters in these names is discouraged, but can be done. This is the COCO category "name" attribute. For categories this may be denoted as (name, node, cname, catname). id: The integer id of a category should ideally remain consistent. These are often given by a dataset (e.g. a COCO dataset). This is the COCO category "id" attribute. For categories this is often denoted as (id, cid). index: Contigous zero-based indices that indexes the list of categories. These should be used for the fastest access in backend computation tasks. Typically corresponds to the ordering of the channels in the final linear layer in an associated model. For categories this is often denoted as (index, cidx, idx, or cx).
- Variables
idx_to_node (List[str]) – a list of class names. Implicitly maps from index to category name.
id_to_node (Dict[int, str]) – maps integer ids to category names
node_to_idx (Dict[str, int]) – maps category names to indexes
graph (networkx.Graph) – a Graph that stores any hierarchy information. For standard mutually exclusive classes, this graph is edgeless. Nodes in this graph can maintain category attributes / properties.
idx_groups (List[List[int]]) – groups of category indices that share the same parent category.
Example
>>> from kwcoco.category_tree import * >>> graph = nx.from_dict_of_lists({ >>> 'background': [], >>> 'foreground': ['animal'], >>> 'animal': ['mammal', 'fish', 'insect', 'reptile'], >>> 'mammal': ['dog', 'cat', 'human', 'zebra'], >>> 'zebra': ['grevys', 'plains'], >>> 'grevys': ['fred'], >>> 'dog': ['boxer', 'beagle', 'golden'], >>> 'cat': ['maine coon', 'persian', 'sphynx'], >>> 'reptile': ['bearded dragon', 't-rex'], >>> }, nx.DiGraph) >>> self = CategoryTree(graph) >>> print(self) <CategoryTree(nNodes=22, maxDepth=6, maxBreadth=4...)>
Example
>>> # The coerce classmethod is the easiest way to create an instance >>> import kwcoco >>> kwcoco.CategoryTree.coerce(['a', 'b', 'c']) <CategoryTree...nNodes=3, nodes=...'a', 'b', 'c'... >>> kwcoco.CategoryTree.coerce(4) <CategoryTree...nNodes=4, nodes=...'class_1', 'class_2', 'class_3', ... >>> kwcoco.CategoryTree.coerce(4)
- Parameters
graph (nx.DiGraph) – either the graph representing a category hierarchy
checks (bool, default=True) – if false, bypass input checks
- classmethod from_mutex(nodes, bg_hack=True)[source]¶
- Parameters
nodes (List[str]) – or a list of class names (in which case they will all be assumed to be mutually exclusive)
Example
>>> print(CategoryTree.from_mutex(['a', 'b', 'c'])) <CategoryTree(nNodes=3, ...)>
- classmethod from_json(state)[source]¶
- Parameters
state (Dict) – see __getstate__ / __json__ for details
- classmethod from_coco(categories)[source]¶
Create a CategoryTree object from coco categories
- Parameters
List[Dict] – list of coco-style categories
- classmethod coerce(data, **kw)[source]¶
Attempt to coerce data as a CategoryTree object.
This is primarily useful for when the software stack depends on categories being represent
This will work if the input data is a specially formatted json dict, a list of mutually exclusive classes, or if it is already a CategoryTree. Otherwise an error will be thrown.
- Parameters
data (object) – a known representation of a category tree.
**kwargs – input type specific arguments
- Returns
self
- Return type
- Raises
TypeError - if the input format is unknown –
ValueError - if kwargs are not compatible with the input format –
Example
>>> import kwcoco >>> classes1 = kwcoco.CategoryTree.coerce(3) # integer >>> classes2 = kwcoco.CategoryTree.coerce(classes1.__json__()) # graph dict >>> classes3 = kwcoco.CategoryTree.coerce(['class_1', 'class_2', 'class_3']) # mutex list >>> classes4 = kwcoco.CategoryTree.coerce(classes1.graph) # nx Graph >>> classes5 = kwcoco.CategoryTree.coerce(classes1) # cls >>> # xdoctest: +REQUIRES(module:ndsampler) >>> import ndsampler >>> classes6 = ndsampler.CategoryTree.coerce(3) >>> classes7 = ndsampler.CategoryTree.coerce(classes1) >>> classes8 = kwcoco.CategoryTree.coerce(classes6)
- classmethod demo(key='coco', **kwargs)[source]¶
- Parameters
key (str) – specify which demo dataset to use. Can be ‘coco’ (which uses the default coco demo data). Can be ‘btree’ which creates a binary tree and accepts kwargs ‘r’ and ‘h’ for branching-factor and height. Can be ‘btree2’, which is the same as btree but returns strings
CommandLine
xdoctest -m ~/code/kwcoco/kwcoco/category_tree.py CategoryTree.demo
Example
>>> from kwcoco.category_tree import * >>> self = CategoryTree.demo() >>> print('self = {}'.format(self)) self = <CategoryTree(nNodes=10, maxDepth=2, maxBreadth=4...)>
- property id_to_idx¶
Example:
>>> import kwcoco >>> self = kwcoco.CategoryTree.demo() >>> self.id_to_idx[1]
- property idx_to_id¶
Example:
>>> import kwcoco >>> self = kwcoco.CategoryTree.demo() >>> self.idx_to_id[0]
- idx_to_ancestor_idxs(include_self=True)[source]¶
Mapping from a class index to its ancestors
- Parameters
include_self (bool, default=True) – if True includes each node as its own ancestor.
- idx_to_descendants_idxs(include_self=False)[source]¶
Mapping from a class index to its descendants (including itself)
- Parameters
include_self (bool, default=False) – if True includes each node as its own descendant.
- idx_pairwise_distance()[source]¶
Get a matrix encoding the distance from one class to another.
- Distances
from parents to children are positive (descendants),
from children to parents are negative (ancestors),
between unreachable nodes (wrt to forward and reverse graph) are nan.
- is_mutex()[source]¶
Returns True if all categories are mutually exclusive (i.e. flat)
If true, then the classes may be represented as a simple list of class names without any loss of information, otherwise the underlying category graph is necessary to preserve all knowledge.
Todo
[ ] what happens when we have a dummy root?
- property num_classes¶
- property class_names¶
- property category_names¶
- property cats¶
Returns a mapping from category names to category attributes.
If this category tree was constructed from a coco-dataset, then this will contain the coco category attributes.
- Returns
Dict[str, Dict[str, object]]
Example
>>> from kwcoco.category_tree import * >>> self = CategoryTree.demo() >>> print('self.cats = {!r}'.format(self.cats))
- normalize()[source]¶
Applies a normalization scheme to the categories.
Note: this may break other tasks that depend on exact category names.
- Returns
CategoryTree
Example
>>> from kwcoco.category_tree import * # NOQA >>> import kwcoco >>> orig = kwcoco.CategoryTree.demo('animals_v1') >>> self = kwcoco.CategoryTree(nx.relabel_nodes(orig.graph, str.upper)) >>> norm = self.normalize()
- class kwcoco.ChannelSpec(spec, parsed=None)[source]¶
Bases:
BaseChannelSpec
Parse and extract information about network input channel specs for early or late fusion networks.
Behaves like a dictionary of FusedChannelSpec objects
Todo
- [ ] Rename to something that indicates this is a collection of
FusedChannelSpec? MultiChannelSpec?
Note
This class name and API is in flux and subject to change.
Note
The pipe (‘|’) character represents an early-fused input stream, and order matters (it is non-communative).
The comma (‘,’) character separates different inputs streams/branches for a multi-stream/branch network which will be lated fused. Order does not matter
Example
>>> from delayed_image.channel_spec import * # NOQA >>> # Integer spec >>> ChannelSpec.coerce(3) <ChannelSpec(u0|u1|u2) ...>
>>> # single mode spec >>> ChannelSpec.coerce('rgb') <ChannelSpec(rgb) ...>
>>> # early fused input spec >>> ChannelSpec.coerce('rgb|disprity') <ChannelSpec(rgb|disprity) ...>
>>> # late fused input spec >>> ChannelSpec.coerce('rgb,disprity') <ChannelSpec(rgb,disprity) ...>
>>> # early and late fused input spec >>> ChannelSpec.coerce('rgb|ir,disprity') <ChannelSpec(rgb|ir,disprity) ...>
Example
>>> self = ChannelSpec('gray') >>> print('self.info = {}'.format(ub.urepr(self.info, nl=1))) >>> self = ChannelSpec('rgb') >>> print('self.info = {}'.format(ub.urepr(self.info, nl=1))) >>> self = ChannelSpec('rgb|disparity') >>> print('self.info = {}'.format(ub.urepr(self.info, nl=1))) >>> self = ChannelSpec('rgb|disparity,disparity') >>> print('self.info = {}'.format(ub.urepr(self.info, nl=1))) >>> self = ChannelSpec('rgb,disparity,flowx|flowy') >>> print('self.info = {}'.format(ub.urepr(self.info, nl=1)))
Example
>>> specs = [ >>> 'rgb', # and rgb input >>> 'rgb|disprity', # rgb early fused with disparity >>> 'rgb,disprity', # rgb early late with disparity >>> 'rgb|ir,disprity', # rgb early fused with ir and late fused with disparity >>> 3, # 3 unknown channels >>> ] >>> for spec in specs: >>> print('=======================') >>> print('spec = {!r}'.format(spec)) >>> # >>> self = ChannelSpec.coerce(spec) >>> print('self = {!r}'.format(self)) >>> sizes = self.sizes() >>> print('sizes = {!r}'.format(sizes)) >>> print('self.info = {}'.format(ub.urepr(self.info, nl=1))) >>> # >>> item = self._demo_item((1, 1), rng=0) >>> inputs = self.encode(item) >>> components = self.decode(inputs) >>> input_shapes = ub.map_vals(lambda x: x.shape, inputs) >>> component_shapes = ub.map_vals(lambda x: x.shape, components) >>> print('item = {}'.format(ub.urepr(item, precision=1))) >>> print('inputs = {}'.format(ub.urepr(inputs, precision=1))) >>> print('input_shapes = {}'.format(ub.urepr(input_shapes))) >>> print('components = {}'.format(ub.urepr(components, precision=1))) >>> print('component_shapes = {}'.format(ub.urepr(component_shapes, nl=1)))
- property spec¶
- property info¶
- classmethod coerce(data)[source]¶
Attempt to interpret the data as a channel specification
- Returns
ChannelSpec
Example
>>> from delayed_image.channel_spec import * # NOQA >>> data = FusedChannelSpec.coerce(3) >>> assert ChannelSpec.coerce(data).spec == 'u0|u1|u2' >>> data = ChannelSpec.coerce(3) >>> assert data.spec == 'u0|u1|u2' >>> assert ChannelSpec.coerce(data).spec == 'u0|u1|u2' >>> data = ChannelSpec.coerce('u:3') >>> assert data.normalize().spec == 'u.0|u.1|u.2'
- parse()[source]¶
Build internal representation
Example
>>> from delayed_image.channel_spec import * # NOQA >>> self = ChannelSpec('b1|b2|b3|rgb,B:3') >>> print(self.parse()) >>> print(self.normalize().parse()) >>> ChannelSpec('').parse()
Example
>>> base = ChannelSpec('rgb|disparity,flowx|r|flowy') >>> other = ChannelSpec('rgb') >>> self = base.intersection(other) >>> assert self.numel() == 4
- concise()[source]¶
Example
>>> self = ChannelSpec('b1|b2,b3|rgb|B.0,B.1|B.2') >>> print(self.concise().spec) b1|b2,b3|r|g|b|B.0,B.1:3
- normalize()[source]¶
Replace aliases with explicit single-band-per-code specs
- Returns
normalized spec
- Return type
Example
>>> self = ChannelSpec('b1|b2,b3|rgb,B:3') >>> normed = self.normalize() >>> print('self = {}'.format(self)) >>> print('normed = {}'.format(normed)) self = <ChannelSpec(b1|b2,b3|rgb,B:3)> normed = <ChannelSpec(b1|b2,b3|r|g|b,B.0|B.1|B.2)>
- fuse()[source]¶
Fuse all parts into an early fused channel spec
- Returns
FusedChannelSpec
Example
>>> from delayed_image.channel_spec import * # NOQA >>> self = ChannelSpec.coerce('b1|b2,b3|rgb,B:3') >>> fused = self.fuse() >>> print('self = {}'.format(self)) >>> print('fused = {}'.format(fused)) self = <ChannelSpec(b1|b2,b3|rgb,B:3)> fused = <FusedChannelSpec(b1|b2|b3|rgb|B:3)>
- streams()[source]¶
Breaks this spec up into one spec for each early-fused input stream
Example
self = ChannelSpec.coerce(‘r|g,B1|B2,fx|fy’) list(map(len, self.streams()))
- as_path()[source]¶
Returns a string suitable for use in a path.
Note, this may no longer be a valid channel spec
Example
>>> from delayed_image.channel_spec import * >>> self = ChannelSpec('rgb|disparity,flowx|r|flowy') >>> self.as_path() rgb_disparity,flowx_r_flowy
- difference(other)[source]¶
Set difference. Remove all instances of other channels from this set of channels.
Example
>>> from delayed_image.channel_spec import * >>> self = ChannelSpec('rgb|disparity,flowx|r|flowy') >>> other = ChannelSpec('rgb') >>> print(self.difference(other)) >>> other = ChannelSpec('flowx') >>> print(self.difference(other)) <ChannelSpec(disparity,flowx|flowy)> <ChannelSpec(r|g|b|disparity,r|flowy)>
Example
>>> from delayed_image.channel_spec import * >>> self = ChannelSpec('a|b,c|d') >>> new = self - {'a', 'b'} >>> len(new.sizes()) == 1 >>> empty = new - 'c|d' >>> assert empty.numel() == 0
- intersection(other)[source]¶
Set difference. Remove all instances of other channels from this set of channels.
Example
>>> from delayed_image.channel_spec import * >>> self = ChannelSpec('rgb|disparity,flowx|r|flowy') >>> other = ChannelSpec('rgb') >>> new = self.intersection(other) >>> print(new) >>> print(new.numel()) >>> other = ChannelSpec('flowx') >>> new = self.intersection(other) >>> print(new) >>> print(new.numel()) <ChannelSpec(r|g|b,r)> 4 <ChannelSpec(flowx)> 1
- union(other)[source]¶
Union simply tags on a second channel spec onto this one. Duplicates are maintained.
Example
>>> from delayed_image.channel_spec import * >>> self = ChannelSpec('rgb|disparity,flowx|r|flowy') >>> other = ChannelSpec('rgb') >>> new = self.union(other) >>> print(new) >>> print(new.numel()) >>> other = ChannelSpec('flowx') >>> new = self.union(other) >>> print(new) >>> print(new.numel()) <ChannelSpec(r|g|b|disparity,flowx|r|flowy,r|g|b)> 10 <ChannelSpec(r|g|b|disparity,flowx|r|flowy,flowx)> 8
- sizes()[source]¶
Number of dimensions for each fused stream channel
IE: The EARLY-FUSED channel sizes
Example
>>> self = ChannelSpec('rgb|disparity,flowx|flowy,B:10') >>> self.normalize().concise() >>> self.sizes()
- _item_shapes(dims)[source]¶
Expected shape for an input item
- Parameters
dims (Tuple[int, int]) – the spatial dimension
- Returns
Dict[int, tuple]
- _demo_item(dims=(4, 4), rng=None)[source]¶
Create an input that satisfies this spec
- Returns
- an item like it might appear when its returned from the
__getitem__ method of a
torch...Dataset
.
- Return type
Example
>>> dims = (1, 1) >>> ChannelSpec.coerce(3)._demo_item(dims, rng=0) >>> ChannelSpec.coerce('r|g|b|disaprity')._demo_item(dims, rng=0) >>> ChannelSpec.coerce('rgb|disaprity')._demo_item(dims, rng=0) >>> ChannelSpec.coerce('rgb,disaprity')._demo_item(dims, rng=0) >>> ChannelSpec.coerce('rgb')._demo_item(dims, rng=0) >>> ChannelSpec.coerce('gray')._demo_item(dims, rng=0)
- encode(item, axis=0, mode=1)[source]¶
Given a dictionary containing preloaded components of the network inputs, build a concatenated (fused) network representations of each input stream.
- Parameters
item (Dict[str, Tensor]) – a batch item containing unfused parts. each key should be a single-stream (optionally early fused) channel key.
axis (int, default=0) – concatenation dimension
- Returns
mapping between input stream and its early fused tensor input.
- Return type
Dict[str, Tensor]
Example
>>> from delayed_image.channel_spec import * # NOQA >>> import numpy as np >>> dims = (4, 4) >>> item = { >>> 'rgb': np.random.rand(3, *dims), >>> 'disparity': np.random.rand(1, *dims), >>> 'flowx': np.random.rand(1, *dims), >>> 'flowy': np.random.rand(1, *dims), >>> } >>> # Complex Case >>> self = ChannelSpec('rgb,disparity,rgb|disparity|flowx|flowy,flowx|flowy') >>> fused = self.encode(item) >>> input_shapes = ub.map_vals(lambda x: x.shape, fused) >>> print('input_shapes = {}'.format(ub.urepr(input_shapes, nl=1))) >>> # Simpler case >>> self = ChannelSpec('rgb|disparity') >>> fused = self.encode(item) >>> input_shapes = ub.map_vals(lambda x: x.shape, fused) >>> print('input_shapes = {}'.format(ub.urepr(input_shapes, nl=1)))
Example
>>> # Case where we have to break up early fused data >>> import numpy as np >>> dims = (40, 40) >>> item = { >>> 'rgb|disparity': np.random.rand(4, *dims), >>> 'flowx': np.random.rand(1, *dims), >>> 'flowy': np.random.rand(1, *dims), >>> } >>> # Complex Case >>> self = ChannelSpec('rgb,disparity,rgb|disparity,rgb|disparity|flowx|flowy,flowx|flowy,flowx,disparity') >>> inputs = self.encode(item) >>> input_shapes = ub.map_vals(lambda x: x.shape, inputs) >>> print('input_shapes = {}'.format(ub.urepr(input_shapes, nl=1)))
>>> # xdoctest: +REQUIRES(--bench) >>> #self = ChannelSpec('rgb|disparity,flowx|flowy') >>> import timerit >>> ti = timerit.Timerit(100, bestof=10, verbose=2) >>> for timer in ti.reset('mode=simple'): >>> with timer: >>> inputs = self.encode(item, mode=0) >>> for timer in ti.reset('mode=minimize-concat'): >>> with timer: >>> inputs = self.encode(item, mode=1)
- decode(inputs, axis=1)[source]¶
break an early fused item into its components
- Parameters
inputs (Dict[str, Tensor]) – dictionary of components
axis (int, default=1) – channel dimension
Example
>>> from delayed_image.channel_spec import * # NOQA >>> import numpy as np >>> dims = (4, 4) >>> item_components = { >>> 'rgb': np.random.rand(3, *dims), >>> 'ir': np.random.rand(1, *dims), >>> } >>> self = ChannelSpec('rgb|ir') >>> item_encoded = self.encode(item_components) >>> batch = {k: np.concatenate([v[None, :], v[None, :]], axis=0) ... for k, v in item_encoded.items()} >>> components = self.decode(batch)
Example
>>> # xdoctest: +REQUIRES(module:netharn, module:torch) >>> import torch >>> import numpy as np >>> dims = (4, 4) >>> components = { >>> 'rgb': np.random.rand(3, *dims), >>> 'ir': np.random.rand(1, *dims), >>> } >>> components = ub.map_vals(torch.from_numpy, components) >>> self = ChannelSpec('rgb|ir') >>> encoded = self.encode(components) >>> from netharn.data import data_containers >>> item = {k: data_containers.ItemContainer(v, stack=True) >>> for k, v in encoded.items()} >>> batch = data_containers.container_collate([item, item]) >>> components = self.decode(batch)
- component_indices(axis=2)[source]¶
Look up component indices within fused streams
Example
>>> dims = (4, 4) >>> inputs = ['flowx', 'flowy', 'disparity'] >>> self = ChannelSpec('disparity,flowx|flowy') >>> component_indices = self.component_indices() >>> print('component_indices = {}'.format(ub.urepr(component_indices, nl=1))) component_indices = { 'disparity': ('disparity', (slice(None, None, None), slice(None, None, None), slice(0, 1, None))), 'flowx': ('flowx|flowy', (slice(None, None, None), slice(None, None, None), slice(0, 1, None))), 'flowy': ('flowx|flowy', (slice(None, None, None), slice(None, None, None), slice(1, 2, None))), }
- class kwcoco.CocoDataset(data=None, tag=None, bundle_dpath=None, img_root=None, fname=None, autobuild=True)[source]¶
Bases:
AbstractCocoDataset
,MixinCocoAddRemove
,MixinCocoStats
,MixinCocoObjects
,MixinCocoDraw
,MixinCocoAccessors
,MixinCocoExtras
,MixinCocoIndex
,MixinCocoDepricate
,NiceRepr
The main coco dataset class with a json dataset backend.
- Variables
dataset (Dict) – raw json data structure. This is the base dictionary that contains {‘annotations’: List, ‘images’: List, ‘categories’: List}
index (CocoIndex) – an efficient lookup index into the coco data structure. The index defines its own attributes like
anns
,cats
,imgs
,gid_to_aids
,file_name_to_img
, etc. SeeCocoIndex
for more details on which attributes are available.fpath (PathLike | None) – if known, this stores the filepath the dataset was loaded from
tag (str | None) – A tag indicating the name of the dataset.
bundle_dpath (PathLike | None) – If known, this is the root path that all image file names are relative to. This can also be manually overwritten by the user.
hashid (str | None) – If computed, this will be a hash uniquely identifing the dataset. To ensure this is computed see
kwcoco.coco_dataset.MixinCocoExtras._build_hashid()
.
References
http://cocodataset.org/#format http://cocodataset.org/#download
CommandLine
python -m kwcoco.coco_dataset CocoDataset --show
Example
>>> from kwcoco.coco_dataset import demo_coco_data >>> import kwcoco >>> import ubelt as ub >>> # Returns a coco json structure >>> dataset = demo_coco_data() >>> # Pass the coco json structure to the API >>> self = kwcoco.CocoDataset(dataset, tag='demo') >>> # Now you can access the data using the index and helper methods >>> # >>> # Start by looking up an image by it's COCO id. >>> image_id = 1 >>> img = self.index.imgs[image_id] >>> print(ub.urepr(img, nl=1, sort=1)) { 'file_name': 'astro.png', 'id': 1, 'url': 'https://i.imgur.com/KXhKM72.png', } >>> # >>> # Use the (gid_to_aids) index to lookup annotations in the iamge >>> annotation_id = sorted(self.index.gid_to_aids[image_id])[0] >>> ann = self.index.anns[annotation_id] >>> print(ub.urepr((ub.udict(ann) - {'segmentation'}).sorted_keys(), nl=1)) { 'bbox': [10, 10, 360, 490], 'category_id': 1, 'id': 1, 'image_id': 1, 'keypoints': [247, 101, 2, 202, 100, 2], } >>> # >>> # Use annotation category id to look up that information >>> category_id = ann['category_id'] >>> cat = self.index.cats[category_id] >>> print('cat = {}'.format(ub.urepr(cat, nl=1, sort=1))) cat = { 'id': 1, 'name': 'astronaut', 'supercategory': 'human', } >>> # >>> # Now play with some helper functions, like extended statistics >>> extended_stats = self.extended_stats() >>> # xdoctest: +IGNORE_WANT >>> print('extended_stats = {}'.format(ub.urepr(extended_stats, nl=1, precision=2, sort=1))) extended_stats = { 'annots_per_img': {'mean': 3.67, 'std': 3.86, 'min': 0.00, 'max': 9.00, 'nMin': 1, 'nMax': 1, 'shape': (3,)}, 'imgs_per_cat': {'mean': 0.88, 'std': 0.60, 'min': 0.00, 'max': 2.00, 'nMin': 2, 'nMax': 1, 'shape': (8,)}, 'cats_per_img': {'mean': 2.33, 'std': 2.05, 'min': 0.00, 'max': 5.00, 'nMin': 1, 'nMax': 1, 'shape': (3,)}, 'annots_per_cat': {'mean': 1.38, 'std': 1.49, 'min': 0.00, 'max': 5.00, 'nMin': 2, 'nMax': 1, 'shape': (8,)}, 'imgs_per_video': {'empty_list': True}, } >>> # You can "draw" a raster of the annotated image with cv2 >>> canvas = self.draw_image(2) >>> # Or if you have matplotlib you can "show" the image with mpl objects >>> # xdoctest: +REQUIRES(--show) >>> from matplotlib import pyplot as plt >>> fig = plt.figure() >>> ax1 = fig.add_subplot(1, 2, 1) >>> self.show_image(gid=2) >>> ax2 = fig.add_subplot(1, 2, 2) >>> ax2.imshow(canvas) >>> ax1.set_title('show with matplotlib') >>> ax2.set_title('draw with cv2') >>> plt.show()
- Parameters
data (str | PathLike | dict | None) – Either a filepath to a coco json file, or a dictionary containing the actual coco json structure. For a more generally coercable constructor see func:CocoDataset.coerce.
tag (str | None) – Name of the dataset for display purposes, and does not influence behavior of the underlying data structure, although it may be used via convinience methods. We attempt to autopopulate this via information in
data
if available. If unspecfied anddata
is a filepath this becomes the basename.bundle_dpath (str | None) – the root of the dataset that images / external data will be assumed to be relative to. If unspecfied, we attempt to determine it using information in
data
. Ifdata
is a filepath, we use the dirname of that path. Ifdata
is a dictionary, we look for the “img_root” key. If unspecfied and we fail to introspect then, we fallback to the current working directory.img_root (str | None) – deprecated alias for bundle_dpath
- property fpath¶
In the future we will deprecate img_root for bundle_dpath
- classmethod from_data(data, bundle_dpath=None, img_root=None)[source]¶
Constructor from a json dictionary
- classmethod from_image_paths(gpaths, bundle_dpath=None, img_root=None)[source]¶
Constructor from a list of images paths.
This is a convinience method.
- Parameters
gpaths (List[str]) – list of image paths
Example
>>> import kwcoco >>> coco_dset = kwcoco.CocoDataset.from_image_paths(['a.png', 'b.png']) >>> assert coco_dset.n_images == 2
- classmethod coerce_multiple(datas, workers=0, mode='process', verbose=1, postprocess=None, ordered=True, **kwargs)[source]¶
Coerce multiple CocoDataset objects in parallel.
- Parameters
datas (List) – list of kwcoco coercables to load
workers (int | str) – number of worker threads / processes. Can also accept coerceable workers.
mode (str) – thread, process, or serial. Defaults to process.
verbose (int) – verbosity level
postprocess (Callable | None) – A function taking one arg (the loaded dataset) to run on the loaded kwcoco dataset in background workers. This can be more efficient when postprocessing is independent per kwcoco file.
ordered (bool) – if True yields datasets in the same order as given. Otherwise results are yielded as they become available. Defaults to True.
**kwargs – arguments passed to the constructor
- Yields
CocoDataset
- SeeAlso:
load_multiple - like this function but is a strict file-path-only loader
CommandLine
xdoctest -m kwcoco.coco_dataset CocoDataset.coerce_multiple
Example
>>> import kwcoco >>> dset1 = kwcoco.CocoDataset.demo('shapes1') >>> dset2 = kwcoco.CocoDataset.demo('shapes2') >>> dset3 = kwcoco.CocoDataset.demo('vidshapes8') >>> dsets = [dset1, dset2, dset3] >>> input_fpaths = [d.fpath for d in dsets] >>> results = list(kwcoco.CocoDataset.coerce_multiple(input_fpaths, ordered=True)) >>> result_fpaths = [r.fpath for r in results] >>> assert result_fpaths == input_fpaths >>> # Test unordered >>> results1 = list(kwcoco.CocoDataset.coerce_multiple(input_fpaths, ordered=False)) >>> result_fpaths = [r.fpath for r in results] >>> assert set(result_fpaths) == set(input_fpaths) >>> # >>> # Coerce from existing datasets >>> results2 = list(kwcoco.CocoDataset.coerce_multiple(dsets, ordered=True, workers=0)) >>> assert results2[0] is dsets[0]
- classmethod load_multiple(fpaths, workers=0, mode='process', verbose=1, postprocess=None, ordered=True, **kwargs)[source]¶
Load multiple CocoDataset objects in parallel.
- Parameters
fpaths (List[str | PathLike]) – list of paths to multiple coco files to be loaded
workers (int) – number of worker threads / processes
mode (str) – thread, process, or serial. Defaults to process.
verbose (int) – verbosity level
postprocess (Callable | None) – A function taking one arg (the loaded dataset) to run on the loaded kwcoco dataset in background workers and returns the modified dataset. This can be more efficient when postprocessing is independent per kwcoco file.
ordered (bool) – if True yields datasets in the same order as given. Otherwise results are yielded as they become available. Defaults to True.
**kwargs – arguments passed to the constructor
- Yields
CocoDataset
- SeeAlso:
- coerce_multiple - like this function but accepts general
coercable inputs.
- classmethod _load_multiple(_loader, inputs, workers=0, mode='process', verbose=1, postprocess=None, ordered=True, **kwargs)[source]¶
Shared logic for multiprocessing loaders.
- SeeAlso:
coerce_multiple
load_multiple
- classmethod from_coco_paths(fpaths, max_workers=0, verbose=1, mode='thread', union='try')[source]¶
Constructor from multiple coco file paths.
Loads multiple coco datasets and unions the result
Note
if the union operation fails, the list of individually loaded files is returned instead.
- Parameters
fpaths (List[str]) – list of paths to multiple coco files to be loaded and unioned.
max_workers (int) – number of worker threads / processes
verbose (int) – verbosity level
mode (str) – thread, process, or serial
union (str | bool) – If True, unions the result datasets after loading. If False, just returns the result list. If ‘try’, then try to preform the union, but return the result list if it fails. Default=’try’
Note
This may be deprecated. Use load_multiple or coerce_multiple and then manually perform the union.
- copy()[source]¶
Deep copies this object
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> new = self.copy() >>> assert new.imgs[1] is new.dataset['images'][0] >>> assert new.imgs[1] == self.dataset['images'][0] >>> assert new.imgs[1] is not self.dataset['images'][0]
- dumps(indent=None, newlines=False)[source]¶
Writes the dataset out to the json format
- Parameters
newlines (bool) – if True, each annotation, image, category gets its own line
indent (int | str | None) – indentation for the json file. See
json.dump()
for details.newlines (bool) – if True, each annotation, image, category gets its own line.
Note
- Using newlines=True is similar to:
print(ub.urepr(dset.dataset, nl=2, trailsep=False)) However, the above may not output valid json if it contains ndarrays.
Example
>>> import kwcoco >>> import json >>> self = kwcoco.CocoDataset.demo() >>> text = self.dumps(newlines=True) >>> print(text) >>> self2 = kwcoco.CocoDataset(json.loads(text), tag='demo2') >>> assert self2.dataset == self.dataset >>> assert self2.dataset is not self.dataset
>>> text = self.dumps(newlines=True) >>> print(text) >>> self2 = kwcoco.CocoDataset(json.loads(text), tag='demo2') >>> assert self2.dataset == self.dataset >>> assert self2.dataset is not self.dataset
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.coerce('vidshapes1-msi-multisensor', verbose=3) >>> self.remove_annotations(self.annots()) >>> text = self.dumps(newlines=0, indent=' ') >>> print(text) >>> text = self.dumps(newlines=True, indent=' ') >>> print(text)
- _compress_dump_to_fileptr(file, arcname=None, indent=None, newlines=False)[source]¶
Experimental method to save compressed kwcoco files, may be folded into dump in the future.
- _dump(file, indent, newlines, compress)[source]¶
Case where we are dumping to an open file pointer. We assume this means the dataset has been written to disk.
- dump(file=None, indent=None, newlines=False, temp_file='auto', compress='auto')[source]¶
Writes the dataset out to the json format
- Parameters
file (PathLike | IO | None) – Where to write the data. Can either be a path to a file or an open file pointer / stream. If unspecified, it will be written to the current
fpath
property.indent (int | str | None) – indentation for the json file. See
json.dump()
for details.newlines (bool) – if True, each annotation, image, category gets its own line.
temp_file (bool | str) – Argument to
safer.open()
. Ignored iffile
is not a PathLike object. Defaults to ‘auto’, which is False on Windows and True everywhere else.compress (bool | str) – if True, dumps the kwcoco file as a compressed zipfile. In this case a literal IO file object must be opened in binary write mode. If auto, then it will default to False unless it can introspect the file name and the name ends with .zip
Example
>>> import kwcoco >>> import ubelt as ub >>> dpath = ub.Path.appdir('kwcoco/demo/dump').ensuredir() >>> dset = kwcoco.CocoDataset.demo() >>> dset.fpath = dpath / 'my_coco_file.json' >>> # Calling dump writes to the current fpath attribute. >>> dset.dump() >>> assert dset.dataset == kwcoco.CocoDataset(dset.fpath).dataset >>> assert dset.dumps() == dset.fpath.read_text() >>> # >>> # Using compress=True can save a lot of space and it >>> # is transparent when reading files via CocoDataset >>> dset.dump(compress=True) >>> assert dset.dataset == kwcoco.CocoDataset(dset.fpath).dataset >>> assert dset.dumps() != dset.fpath.read_text(errors='replace')
Example
>>> import kwcoco >>> import ubelt as ub >>> # Compression auto-defaults based on the file name. >>> dpath = ub.Path.appdir('kwcoco/demo/dump').ensuredir() >>> dset = kwcoco.CocoDataset.demo() >>> fpath1 = dset.fpath = dpath / 'my_coco_file.zip' >>> dset.dump() >>> fpath2 = dset.fpath = dpath / 'my_coco_file.json' >>> dset.dump() >>> assert fpath1.read_bytes()[0:8] != fpath2.read_bytes()[0:8]
- _check_json_serializable(verbose=1)[source]¶
Debug which part of a coco dataset might not be json serializable
- _check_index()[source]¶
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> self._check_index() >>> # Force a failure >>> self.index.anns.pop(1) >>> self.index.anns.pop(2) >>> import pytest >>> with pytest.raises(AssertionError): >>> self._check_index()
- _abc_impl = <_abc_data object>¶
- _check_pointers(verbose=1)[source]¶
Check that all category and image ids referenced by annotations exist
- union(*, disjoint_tracks=True, remember_parent=False, **kwargs)[source]¶
Merges multiple
CocoDataset
items into one. Names and associations are retained, but ids may be different.- Parameters
*others – a series of CocoDatasets that we will merge. Note, if called as an instance method, the “self” instance will be the first item in the “others” list. But if called like a classmethod, “others” will be empty by default.
disjoint_tracks (bool) – if True, we will assume track-ids are disjoint and if two datasets share the same track-id, we will disambiguate them. Otherwise they will be copied over as-is. Defaults to True.
remember_parent (bool) – if True, videos and images will save information about their parent in the “union_parent” field.
**kwargs – constructor options for the new merged CocoDataset
- Returns
a new merged coco dataset
- Return type
CommandLine
xdoctest -m kwcoco.coco_dataset CocoDataset.union
Example
>>> import kwcoco >>> # Test union works with different keypoint categories >>> dset1 = kwcoco.CocoDataset.demo('shapes1') >>> dset2 = kwcoco.CocoDataset.demo('shapes2') >>> dset1.remove_keypoint_categories(['bot_tip', 'mid_tip', 'right_eye']) >>> dset2.remove_keypoint_categories(['top_tip', 'left_eye']) >>> dset_12a = kwcoco.CocoDataset.union(dset1, dset2) >>> dset_12b = dset1.union(dset2) >>> dset_21 = dset2.union(dset1) >>> def add_hist(h1, h2): >>> return {k: h1.get(k, 0) + h2.get(k, 0) for k in set(h1) | set(h2)} >>> kpfreq1 = dset1.keypoint_annotation_frequency() >>> kpfreq2 = dset2.keypoint_annotation_frequency() >>> kpfreq_want = add_hist(kpfreq1, kpfreq2) >>> kpfreq_got1 = dset_12a.keypoint_annotation_frequency() >>> kpfreq_got2 = dset_12b.keypoint_annotation_frequency() >>> assert kpfreq_want == kpfreq_got1 >>> assert kpfreq_want == kpfreq_got2
>>> # Test disjoint gid datasets >>> dset1 = kwcoco.CocoDataset.demo('shapes3') >>> for new_gid, img in enumerate(dset1.dataset['images'], start=10): >>> for aid in dset1.gid_to_aids[img['id']]: >>> dset1.anns[aid]['image_id'] = new_gid >>> img['id'] = new_gid >>> dset1.index.clear() >>> dset1._build_index() >>> # ------ >>> dset2 = kwcoco.CocoDataset.demo('shapes2') >>> for new_gid, img in enumerate(dset2.dataset['images'], start=100): >>> for aid in dset2.gid_to_aids[img['id']]: >>> dset2.anns[aid]['image_id'] = new_gid >>> img['id'] = new_gid >>> dset1.index.clear() >>> dset2._build_index() >>> others = [dset1, dset2] >>> merged = kwcoco.CocoDataset.union(*others) >>> print('merged = {!r}'.format(merged)) >>> print('merged.imgs = {}'.format(ub.urepr(merged.imgs, nl=1))) >>> assert set(merged.imgs) & set([10, 11, 12, 100, 101]) == set(merged.imgs)
>>> # Test data is not preserved >>> dset2 = kwcoco.CocoDataset.demo('shapes2') >>> dset1 = kwcoco.CocoDataset.demo('shapes3') >>> others = (dset1, dset2) >>> cls = self = kwcoco.CocoDataset >>> merged = cls.union(*others) >>> print('merged = {!r}'.format(merged)) >>> print('merged.imgs = {}'.format(ub.urepr(merged.imgs, nl=1))) >>> assert set(merged.imgs) & set([1, 2, 3, 4, 5]) == set(merged.imgs)
>>> # Test track-ids are mapped correctly >>> dset1 = kwcoco.CocoDataset.demo('vidshapes1') >>> dset2 = kwcoco.CocoDataset.demo('vidshapes2') >>> dset3 = kwcoco.CocoDataset.demo('vidshapes3') >>> others = (dset1, dset2, dset3) >>> for dset in others: >>> [a.pop('segmentation', None) for a in dset.index.anns.values()] >>> [a.pop('keypoints', None) for a in dset.index.anns.values()] >>> cls = self = kwcoco.CocoDataset >>> merged = cls.union(*others, disjoint_tracks=1) >>> print('dset1.anns = {}'.format(ub.urepr(dset1.anns, nl=1))) >>> print('dset2.anns = {}'.format(ub.urepr(dset2.anns, nl=1))) >>> print('dset3.anns = {}'.format(ub.urepr(dset3.anns, nl=1))) >>> print('merged.anns = {}'.format(ub.urepr(merged.anns, nl=1)))
Example
>>> import kwcoco >>> # Test empty union >>> empty_union = kwcoco.CocoDataset.union() >>> assert len(empty_union.index.imgs) == 0
Todo
[ ] are supercategories broken?
[ ] reuse image ids where possible
[ ] reuse annotation / category ids where possible
[X] handle case where no inputs are given
[x] disambiguate track-ids
[x] disambiguate video-ids
- subset(gids, copy=False, autobuild=True)[source]¶
Return a subset of the larger coco dataset by specifying which images to port. All annotations in those images will be taken.
- Parameters
gids (List[int]) – image-ids to copy into a new dataset
copy (bool) – if True, makes a deep copy of all nested attributes, otherwise makes a shallow copy. Defaults to True.
autobuild (bool) – if True will automatically build the fast lookup index. Defaults to True.
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> gids = [1, 3] >>> sub_dset = self.subset(gids) >>> assert len(self.index.gid_to_aids) == 3 >>> assert len(sub_dset.gid_to_aids) == 2
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo('vidshapes2') >>> gids = [1, 2] >>> sub_dset = self.subset(gids, copy=True) >>> assert len(sub_dset.index.videos) == 1 >>> assert len(self.index.videos) == 2
Example
>>> import kwcoco >>> self = kwcoco.CocoDataset.demo() >>> sub1 = self.subset([1]) >>> sub2 = self.subset([2]) >>> sub3 = self.subset([3]) >>> others = [sub1, sub2, sub3] >>> rejoined = kwcoco.CocoDataset.union(*others) >>> assert len(sub1.anns) == 9 >>> assert len(sub2.anns) == 2 >>> assert len(sub3.anns) == 0 >>> assert rejoined.basic_stats() == self.basic_stats()
- view_sql(force_rewrite=False, memory=False, backend='sqlite', sql_db_fpath=None)[source]¶
Create a cached SQL interface to this dataset suitable for large scale multiprocessing use cases.
- Parameters
force_rewrite (bool) – if True, forces an update to any existing cache file on disk
memory (bool) – if True, the database is constructed in memory.
backend (str) – sqlite or postgresql
sql_db_fpath (str | PathLike | None) – overrides the database uri
Note
This view cache is experimental and currently depends on the timestamp of the file pointed to by
self.fpath
. In other words dont use this on in-memory datasets.CommandLine
KWCOCO_WITH_POSTGRESQL=1 xdoctest -m /home/joncrall/code/kwcoco/kwcoco/coco_dataset.py CocoDataset.view_sql
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> # xdoctest: +REQUIRES(env:KWCOCO_WITH_POSTGRESQL) >>> # xdoctest: +REQUIRES(module:psycopg2) >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes32') >>> postgres_dset = dset.view_sql(backend='postgresql', force_rewrite=True) >>> sqlite_dset = dset.view_sql(backend='sqlite', force_rewrite=True) >>> list(dset.anns.keys()) >>> list(postgres_dset.anns.keys()) >>> list(sqlite_dset.anns.keys())
- class kwcoco.CocoImage(img, dset=None)[source]¶
Bases:
AliasedDictProxy
,NiceRepr
An object-oriented representation of a coco image.
It provides helper methods that are specific to a single image.
This operates directly on a single coco image dictionary, but it can optionally be connected to a parent dataset, which allows it to use CocoDataset methods to query about relationships and resolve pointers.
This is different than the Images class in coco_object1d, which is just a vectorized interface to multiple objects.
Example
>>> import kwcoco >>> dset1 = kwcoco.CocoDataset.demo('shapes8') >>> dset2 = kwcoco.CocoDataset.demo('vidshapes8-multispectral')
>>> self = kwcoco.CocoImage(dset1.imgs[1], dset1) >>> print('self = {!r}'.format(self)) >>> print('self.channels = {}'.format(ub.urepr(self.channels, nl=1)))
>>> self = kwcoco.CocoImage(dset2.imgs[1], dset2) >>> print('self.channels = {}'.format(ub.urepr(self.channels, nl=1))) >>> self.primary_asset() >>> assert 'auxiliary' in self
- property bundle_dpath¶
- property video¶
Helper to grab the video for this image if it exists
- detach()[source]¶
Removes references to the underlying coco dataset, but keeps special information such that it wont be needed.
- property assets¶
- property datetime¶
Try to get datetime information for this image. Not always possible.
- property channels¶
- property num_channels¶
- property dsize¶
- primary_asset(requires=None)[source]¶
Compute a “main” image asset.
Note
Uses a heuristic.
First, try to find the auxiliary image that has with the smallest
distortion to the base image (if known via warp_aux_to_img)
Second, break ties by using the largest image if w / h is known
Last, if previous information not available use the first auxiliary image.
- Parameters
requires (List[str] | None) – list of attribute that must be non-None to consider an object as the primary one.
- Returns
the asset dict or None if it is not found
- Return type
None | dict
Todo
[ ] Add in primary heuristics
Example
>>> import kwarray >>> from kwcoco.coco_image import * # NOQA >>> rng = kwarray.ensure_rng(0) >>> def random_auxiliary(name, w=None, h=None): >>> return {'file_name': name, 'width': w, 'height': h} >>> self = CocoImage({ >>> 'auxiliary': [ >>> random_auxiliary('1'), >>> random_auxiliary('2'), >>> random_auxiliary('3'), >>> ] >>> }) >>> assert self.primary_asset()['file_name'] == '1' >>> self = CocoImage({ >>> 'auxiliary': [ >>> random_auxiliary('1'), >>> random_auxiliary('2', 3, 3), >>> random_auxiliary('3'), >>> ] >>> }) >>> assert self.primary_asset()['file_name'] == '2'
- iter_image_filepaths(with_bundle=True)[source]¶
Could rename to iter_asset_filepaths
- Parameters
with_bundle (bool) – If True, prepends the bundle dpath to fully specify the path. Otherwise, just returns the registered string in the file_name attribute of each asset. Defaults to True.
- Yields
ub.Path
- iter_asset_objs()[source]¶
Iterate through base + auxiliary dicts that have file paths
- Yields
dict – an image or auxiliary dictionary
- find_asset_obj(channels)[source]¶
Find the asset dictionary with the specified channels
Example
>>> import kwcoco >>> coco_img = kwcoco.CocoImage({'width': 128, 'height': 128}) >>> coco_img.add_auxiliary_item( >>> 'rgb.png', channels='red|green|blue', width=32, height=32) >>> assert coco_img.find_asset_obj('red') is not None >>> assert coco_img.find_asset_obj('green') is not None >>> assert coco_img.find_asset_obj('blue') is not None >>> assert coco_img.find_asset_obj('red|blue') is not None >>> assert coco_img.find_asset_obj('red|green|blue') is not None >>> assert coco_img.find_asset_obj('red|green|blue') is not None >>> assert coco_img.find_asset_obj('black') is None >>> assert coco_img.find_asset_obj('r') is None
Example
>>> # Test with concise channel code >>> import kwcoco >>> coco_img = kwcoco.CocoImage({'width': 128, 'height': 128}) >>> coco_img.add_auxiliary_item( >>> 'msi.png', channels='foo.0:128', width=32, height=32) >>> assert coco_img.find_asset_obj('foo') is None >>> assert coco_img.find_asset_obj('foo.3') is not None >>> assert coco_img.find_asset_obj('foo.3:5') is not None >>> assert coco_img.find_asset_obj('foo.3000') is None
- add_annotation(**ann)[source]¶
Adds an annotation to this image.
This is a convinience method, and requires that this CocoImage is still connected to a parent dataset.
- Parameters
**ann – annotation attributes (e.g. bbox, category_id)
- Returns
the new annotation id
- Return type
- SeeAlso:
kwcoco.CocoDataset.add_annotation()
- add_asset(file_name=None, channels=None, imdata=None, warp_aux_to_img=None, width=None, height=None, imwrite=False, image_id=None, **kw)[source]¶
Adds an auxiliary / asset item to the image dictionary.
This operation can be done purely in-memory (the default), or the image data can be written to a file on disk (via the imwrite=True flag).
- Parameters
file_name (str | PathLike | None) – The name of the file relative to the bundle directory. If unspecified, imdata must be given.
channels (str | kwcoco.FusedChannelSpec | None) – The channel code indicating what each of the bands represents. These channels should be disjoint wrt to the existing data in this image (this is not checked).
imdata (ndarray | None) – The underlying image data this auxiliary item represents. If unspecified, it is assumed file_name points to a path on disk that will eventually exist. If imdata, file_name, and the special imwrite=True flag are specified, this function will write the data to disk.
warp_aux_to_img (kwimage.Affine | None) – The transformation from this auxiliary space to image space. If unspecified, assumes this item is related to image space by only a scale factor.
width (int | None) – Width of the data in auxiliary space (inferred if unspecified)
height (int | None) – Height of the data in auxiliary space (inferred if unspecified)
imwrite (bool) – If specified, both imdata and file_name must be specified, and this will write the data to disk. Note: it it recommended that you simply call imwrite yourself before or after calling this function. This lets you better control imwrite parameters.
image_id (int | None) – An asset dictionary contains an image-id, but it should not be specified here. If it is, then it must agree with this image’s id.
**kw – stores arbitrary key/value pairs in this new asset.
Todo
[ ] Allow imwrite to specify an executor that is used to
return a Future so the imwrite call does not block.
Example
>>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> coco_img = dset.coco_image(1) >>> imdata = np.random.rand(32, 32, 5) >>> channels = kwcoco.FusedChannelSpec.coerce('Aux:5') >>> coco_img.add_asset(imdata=imdata, channels=channels)
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset() >>> gid = dset.add_image(name='my_image_name', width=200, height=200) >>> coco_img = dset.coco_image(gid) >>> coco_img.add_asset('path/img1_B0.tif', channels='B0', width=200, height=200) >>> coco_img.add_asset('path/img1_B1.tif', channels='B1', width=200, height=200) >>> coco_img.add_asset('path/img1_B2.tif', channels='B2', width=200, height=200) >>> coco_img.add_asset('path/img1_TCI.tif', channels='r|g|b', width=200, height=200)
- imdelay(channels=None, space='image', resolution=None, bundle_dpath=None, interpolation='linear', antialias=True, nodata_method=None, RESOLUTION_KEY=None)[source]¶
Perform a delayed load on the data in this image.
The delayed load can load a subset of channels, and perform lazy warping operations. If the underlying data is in a tiled format this can reduce the amount of disk IO needed to read the data if only a small crop or lower resolution view of the data is needed.
Note
This method is experimental and relies on the delayed load proof-of-concept.
- Parameters
gid (int) – image id to load
channels (kwcoco.FusedChannelSpec) – specific channels to load. if unspecified, all channels are loaded.
space (str) – can either be “image” for loading in image space, or “video” for loading in video space.
resolution (None | str | float) – If specified, applies an additional scale factor to the result such that the data is loaded at this specified resolution. This requires that the image / video has a registered resolution attribute and that its units agree with this request.
Todo
- [ ] This function could stand to have a better name. Maybe imread
with a delayed=True flag? Or maybe just delayed_load?
Example
>>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> gid = 1 >>> # >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> self = CocoImage(dset.imgs[gid], dset) >>> delayed = self.imdelay() >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> # >>> dset = kwcoco.CocoDataset.demo('shapes8') >>> delayed = dset.coco_image(gid).imdelay() >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize()))
>>> crop = delayed.crop((slice(0, 3), slice(0, 3))) >>> crop.finalize()
>>> # TODO: should only select the "red" channel >>> dset = kwcoco.CocoDataset.demo('shapes8') >>> delayed = CocoImage(dset.imgs[gid], dset).imdelay(channels='r')
>>> import kwcoco >>> gid = 1 >>> # >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> delayed = dset.coco_image(gid).imdelay(channels='B1|B2', space='image') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> delayed = dset.coco_image(gid).imdelay(channels='B1|B2|B11', space='image') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize())) >>> delayed = dset.coco_image(gid).imdelay(channels='B8|B1', space='video') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize()))
>>> delayed = dset.coco_image(gid).imdelay(channels='B8|foo|bar|B1', space='video') >>> print('delayed = {!r}'.format(delayed)) >>> print('delayed.finalize() = {!r}'.format(delayed.finalize()))
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo() >>> coco_img = dset.coco_image(1) >>> # Test case where nothing is registered in the dataset >>> delayed = coco_img.imdelay() >>> final = delayed.finalize() >>> assert final.shape == (512, 512, 3)
>>> delayed = coco_img.imdelay() >>> final = delayed.finalize() >>> print('final.shape = {}'.format(ub.urepr(final.shape, nl=1))) >>> assert final.shape == (512, 512, 3)
Example
>>> # Test that delay works when imdata is stored in the image >>> # dictionary itself. >>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> coco_img = dset.coco_image(1) >>> imdata = np.random.rand(6, 6, 5) >>> imdata[:] = np.arange(5)[None, None, :] >>> channels = kwcoco.FusedChannelSpec.coerce('Aux:5') >>> coco_img.add_auxiliary_item(imdata=imdata, channels=channels) >>> delayed = coco_img.imdelay(channels='B1|Aux:2:4') >>> final = delayed.finalize()
Example
>>> # Test delay when loading in asset space >>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-msi-multisensor') >>> coco_img = dset.coco_image(1) >>> stream1 = coco_img.channels.streams()[0] >>> stream2 = coco_img.channels.streams()[1] >>> asset_delayed = coco_img.imdelay(stream1, space='asset') >>> img_delayed = coco_img.imdelay(stream1, space='image') >>> vid_delayed = coco_img.imdelay(stream1, space='video') >>> # >>> aux_imdata = asset_delayed.as_xarray().finalize() >>> img_imdata = img_delayed.as_xarray().finalize() >>> assert aux_imdata.shape != img_imdata.shape >>> # Cannot load multiple asset items at the same time in >>> # asset space >>> import pytest >>> fused_channels = stream1 | stream2 >>> from delayed_image.delayed_nodes import CoordinateCompatibilityError >>> with pytest.raises(CoordinateCompatibilityError): >>> aux_delayed2 = coco_img.imdelay(fused_channels, space='asset')
Example
>>> # Test loading at a specific resolution. >>> from kwcoco.coco_image import * # NOQA >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-msi-multisensor') >>> coco_img = dset.coco_image(1) >>> coco_img.img['resolution'] = '1 meter' >>> img_delayed1 = coco_img.imdelay(space='image') >>> vid_delayed1 = coco_img.imdelay(space='video') >>> # test with unitless request >>> img_delayed2 = coco_img.imdelay(space='image', resolution=3.1) >>> vid_delayed2 = coco_img.imdelay(space='video', resolution='3.1 meter') >>> np.ceil(img_delayed1.shape[0] / 3.1) == img_delayed2.shape[0] >>> np.ceil(vid_delayed1.shape[0] / 3.1) == vid_delayed2.shape[0] >>> # test with unitless data >>> coco_img.img['resolution'] = 1 >>> img_delayed2 = coco_img.imdelay(space='image', resolution=3.1) >>> vid_delayed2 = coco_img.imdelay(space='video', resolution='3.1 meter') >>> np.ceil(img_delayed1.shape[0] / 3.1) == img_delayed2.shape[0] >>> np.ceil(vid_delayed1.shape[0] / 3.1) == vid_delayed2.shape[0]
- valid_region(space='image')[source]¶
If this image has a valid polygon, return it in image, or video space
- Returns
None | kwimage.MultiPolygon
- property warp_vid_from_img¶
Affine transformation that warps image space -> video space.
- Returns
The transformation matrix
- Return type
- property warp_img_from_vid¶
Affine transformation that warps video space -> image space.
- Returns
The transformation matrix
- Return type
- resolution(space='image', channel=None, RESOLUTION_KEY=None)[source]¶
Returns the resolution of this CocoImage in the requested space if known. Errors if this information is not registered.
- Parameters
space (str) – the space to the resolution of. Can be either “image”, “video”, or “asset”.
channel (str | kwcoco.FusedChannelSpec | None) – a channel that identifies a single asset, only relevant if asking for asset space
- Returns
has items mag (with the magnitude of the resolution) and unit, which is a convinience and only loosely enforced.
- Return type
Dict
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> self = dset.coco_image(1) >>> self.img['resolution'] = 1 >>> self.resolution() >>> self.img['resolution'] = '1 meter' >>> self.resolution(space='video') {'mag': (1.0, 1.0), 'unit': 'meter'} >>> self.resolution(space='asset', channel='B11') >>> self.resolution(space='asset', channel='B1')
- _scalefactor_for_resolution(space, resolution, channel=None, RESOLUTION_KEY=None)[source]¶
Given image or video space, compute the scale factor needed to achieve the target resolution.
# Use this to implement scale_resolution_from_img scale_resolution_from_vid
- Parameters
space (str) – the space to the resolution of. Can be either “image”, “video”, or “asset”.
resolution (str | float | int) – the resolution (ideally with units) you want.
channel (str | kwcoco.FusedChannelSpec | None) – a channel that identifies a single asset, only relevant if asking for asset space
- Returns
the x and y scale factor that can be used to scale the underlying “space” to acheive the requested resolution.
- Return type
- _detections_for_resolution(space='video', resolution=None, RESOLUTION_KEY=None)[source]¶
This is slightly less than ideal in terms of API, but it will work for now.
- add_auxiliary_item(**kwargs)¶
- delay(**kwargs)¶
- show(**kwargs)[source]¶
Show the image with matplotlib if possible
- SeeAlso:
kwcoco.CocoDataset.show_image()
Example
>>> # xdoctest: +REQUIRES(module:kwplot) >>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> self = dset.coco_image(1) >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autoplt() >>> self.show()
- draw(**kwargs)[source]¶
Draw the image on an ndarray using opencv
- SeeAlso:
kwcoco.CocoDataset.draw_image()
Example
>>> import kwcoco >>> dset = kwcoco.CocoDataset.demo('vidshapes8-multispectral') >>> self = dset.coco_image(1) >>> canvas = self.draw() >>> # xdoctest: +REQUIRES(--show) >>> import kwplot >>> kwplot.autompl() >>> kwplot.imshow(canvas)
- class kwcoco.CocoSqlDatabase(uri=None, tag=None, img_root=None)[source]¶
Bases:
AbstractCocoDataset
,MixinCocoAccessors
,MixinCocoObjects
,MixinCocoStats
,MixinCocoDraw
,NiceRepr
Provides an API nearly identical to
kwcoco.CocoDatabase
, but uses an SQL backend data store. This makes it robust to copy-on-write memory issues that arise when forking, as discussed in 1.Note
By default constructing an instance of the CocoSqlDatabase does not create a connection to the databse. Use the
connect()
method to open a connection.References
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> sql_dset, dct_dset = demo() >>> dset1, dset2 = sql_dset, dct_dset >>> tag1, tag2 = 'dset1', 'dset2' >>> assert_dsets_allclose(sql_dset, dct_dset)
- MEMORY_URI = 'sqlite:///:memory:'¶
- classmethod coerce(data, backend=None)[source]¶
Create an SQL CocoDataset from the input pointer.
Example
import kwcoco dset = kwcoco.CocoDataset.demo(‘shapes8’) data = dset.fpath self = CocoSqlDatabase.coerce(data)
from kwcoco.coco_sql_dataset import CocoSqlDatabase import kwcoco dset = kwcoco.CocoDataset.coerce(‘spacenet7.kwcoco.json’)
self = CocoSqlDatabase.coerce(dset)
from kwcoco.coco_sql_dataset import CocoSqlDatabase sql_dset = CocoSqlDatabase.coerce(‘spacenet7.kwcoco.json’)
# from kwcoco.coco_sql_dataset import CocoSqlDatabase import kwcoco sql_dset = kwcoco.CocoDataset.coerce(‘_spacenet7.kwcoco.view.v006.sqlite’)
- connect(readonly=False, verbose=0)[source]¶
Connects this instance to the underlying database.
References
# details on read only mode, some of these didnt seem to work https://github.com/sqlalchemy/sqlalchemy/blob/master/lib/sqlalchemy/dialects/sqlite/pysqlite.py#L71 https://github.com/pudo/dataset/issues/136 https://writeonly.wordpress.com/2009/07/16/simple-read-only-sqlalchemy-sessions/
CommandLine
KWCOCO_WITH_POSTGRESQL=1 xdoctest -m /home/joncrall/code/kwcoco/kwcoco/coco_sql_dataset.py CocoSqlDatabase.connect
Example
>>> # xdoctest: +REQUIRES(env:KWCOCO_WITH_POSTGRESQL) >>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> # xdoctest: +REQUIRES(module:psycopg2) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> dset = CocoSqlDatabase('postgresql+psycopg2://kwcoco:kwcoco_pw@localhost:5432/mydb') >>> self = dset >>> dset.connect(verbose=1)
- property fpath¶
- populate_from(dset, verbose=1)[source]¶
Copy the information in a
CocoDataset
into this SQL database.Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import _benchmark_dset_readtime # NOQA >>> import kwcoco >>> from kwcoco.coco_sql_dataset import * >>> dset2 = dset = kwcoco.CocoDataset.demo() >>> dset2.clear_annotations() >>> dset1 = self = CocoSqlDatabase('sqlite:///:memory:') >>> self.connect() >>> self.populate_from(dset) >>> dset1_images = list(dset1.dataset['images']) >>> print('dset1_images = {}'.format(ub.urepr(dset1_images, nl=1))) >>> print(dset2.dumps(newlines=True)) >>> assert_dsets_allclose(dset1, dset2, tag1='sql', tag2='dct') >>> ti_sql = _benchmark_dset_readtime(dset1, 'sql') >>> ti_dct = _benchmark_dset_readtime(dset2, 'dct') >>> print('ti_sql.rankings = {}'.format(ub.urepr(ti_sql.rankings, nl=2, precision=6, align=':'))) >>> print('ti_dct.rankings = {}'.format(ub.urepr(ti_dct.rankings, nl=2, precision=6, align=':')))
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import _benchmark_dset_readtime # NOQA >>> import kwcoco >>> from kwcoco.coco_sql_dataset import * >>> dset2 = dset = kwcoco.CocoDataset.demo() >>> dset1 = self = CocoSqlDatabase('sqlite:///:memory:') >>> self.connect() >>> self.populate_from(dset) >>> assert_dsets_allclose(dset1, dset2, tag1='sql', tag2='dct') >>> ti_sql = _benchmark_dset_readtime(dset1, 'sql') >>> ti_dct = _benchmark_dset_readtime(dset2, 'dct') >>> print('ti_sql.rankings = {}'.format(ub.urepr(ti_sql.rankings, nl=2, precision=6, align=':'))) >>> print('ti_dct.rankings = {}'.format(ub.urepr(ti_dct.rankings, nl=2, precision=6, align=':')))
CommandLine
KWCOCO_WITH_POSTGRESQL=1 xdoctest -m /home/joncrall/code/kwcoco/kwcoco/coco_sql_dataset.py CocoSqlDatabase.populate_from:1
Example
>>> # xdoctest: +REQUIRES(env:KWCOCO_WITH_POSTGRESQL) >>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> # xdoctest: +REQUIRES(module:psycopg2) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> import kwcoco >>> dset = dset2 = kwcoco.CocoDataset.demo() >>> self = dset1 = CocoSqlDatabase('postgresql+psycopg2://kwcoco:kwcoco_pw@localhost:5432/test_populate') >>> self.delete(verbose=1) >>> self.connect(verbose=1) >>> #self.populate_from(dset)
- property dataset¶
- property anns¶
- property cats¶
- property imgs¶
- property name_to_cat¶
- pandas_table(table_name, strict=False)[source]¶
Loads an entire SQL table as a pandas DataFrame
- Parameters
table_name (str) – name of the table
- Returns
pandas.DataFrame
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> # xdoctest: +REQUIRES(module:pandas) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> self, dset = demo() >>> table_df = self.pandas_table('annotations') >>> print(table_df)
- _raw_tables()[source]¶
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> import pandas as pd >>> self, dset = demo() >>> targets = self._raw_tables() >>> for tblname, table in targets.items(): ... print(f'tblname={tblname}') ... print(pd.DataFrame(table))
- _column_lookup(tablename, key, rowids, default=NoParam, keepid=False)[source]¶
Convinience method to lookup only a single column of information
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> self, dset = demo(10) >>> tablename = 'annotations' >>> key = 'category_id' >>> rowids = list(self.anns.keys())[::3] >>> cids1 = self._column_lookup(tablename, key, rowids) >>> cids2 = self.annots(rowids).get(key) >>> cids3 = dset.annots(rowids).get(key) >>> assert cids3 == cids2 == cids1 >>> # Test json columns work >>> vals1 = self._column_lookup(tablename, 'bbox', rowids) >>> vals2 = self.annots(rowids).lookup('bbox') >>> vals3 = dset.annots(rowids).lookup('bbox') >>> assert vals1 == vals2 == vals3 >>> vals1 = self._column_lookup(tablename, 'segmentation', rowids) >>> vals2 = self.annots(rowids).lookup('segmentation') >>> vals3 = dset.annots(rowids).lookup('segmentation') >>> assert vals1 == vals2 == vals3
- _all_rows_column_lookup(tablename, keys)[source]¶
Convinience method to look up all rows from a table and only a few columns.
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> self, dset = demo(10) >>> tablename = 'annotations' >>> keys = ['id', 'category_id'] >>> rows = self._all_rows_column_lookup(tablename, keys)
- tabular_targets()[source]¶
Convinience method to create an in-memory summary of basic annotation properties with minimal SQL overhead.
Example
>>> # xdoctest: +REQUIRES(module:sqlalchemy) >>> from kwcoco.coco_sql_dataset import * # NOQA >>> self, dset = demo() >>> targets = self.tabular_targets() >>> print(targets.pandas())
- property bundle_dpath¶
- property data_fpath¶
data_fpath is an alias of fpath
- _orig_coco_fpath()[source]¶
Hack to reconstruct the original name. Makes assumptions about how naming is handled elsewhere. There should be centralized logic about how to construct side-car names that can be queried for inversed like this.
- _abc_impl = <_abc_data object>¶
- class kwcoco.FusedChannelSpec(parsed, _is_normalized=False)[source]¶
Bases:
BaseChannelSpec
A specific type of channel spec with only one early fused stream.
The channels in this stream are non-communative
Behaves like a list of atomic-channel codes (which may represent more than 1 channel), normalized codes always represent exactly 1 channel.
Note
This class name and API is in flux and subject to change.
Todo
A special code indicating a name and some number of bands that that names contains, this would primarilly be used for large numbers of channels produced by a network. Like:
resnet_d35d060_L5:512
or
resnet_d35d060_L5[:512]
might refer to a very specific (hashed) set of resnet parameters with 512 bands
maybe we can do something slicly like:
resnet_d35d060_L5[A:B] resnet_d35d060_L5:A:B
Do we want to “just store the code” and allow for parsing later?
Or do we want to ensure the serialization is parsed before we construct the data structure?
Example
>>> from delayed_image.channel_spec import * # NOQA >>> import pickle >>> self = FusedChannelSpec.coerce(3) >>> recon = pickle.loads(pickle.dumps(self)) >>> self = ChannelSpec.coerce('a|b,c|d') >>> recon = pickle.loads(pickle.dumps(self))
- _alias_lut = {'dxdy': ['dx', 'dy'], 'fxfy': ['fx', 'fy'], 'rgb': ['r', 'g', 'b'], 'rgba': ['r', 'g', 'b', 'a']}¶
- _memo = {'B1': <FusedChannelSpec(B1)>, 'B10': <FusedChannelSpec(B10)>, 'B11': <FusedChannelSpec(B11)>, 'B8': <FusedChannelSpec(B8)>, 'B8a': <FusedChannelSpec(B8a)>}¶
- _size_lut = {'dxdy': 2, 'fxfy': 2, 'rgb': 3, 'rgba': 4}¶
- property spec¶
- classmethod coerce(data)[source]¶
Example
>>> from delayed_image.channel_spec import * # NOQA >>> FusedChannelSpec.coerce(['a', 'b', 'c']) >>> FusedChannelSpec.coerce('a|b|c') >>> FusedChannelSpec.coerce(3) >>> FusedChannelSpec.coerce(FusedChannelSpec(['a'])) >>> assert FusedChannelSpec.coerce('').numel() == 0
- concise()[source]¶
Shorted the channel spec by de-normaliz slice syntax
- Returns
concise spec
- Return type
Example
>>> from delayed_image.channel_spec import * # NOQA >>> self = FusedChannelSpec.coerce( >>> 'b|a|a.0|a.1|a.2|a.5|c|a.8|a.9|b.0:3|c.0') >>> short = self.concise() >>> long = short.normalize() >>> numels = [c.numel() for c in [self, short, long]] >>> print('self.spec = {!r}'.format(self.spec)) >>> print('short.spec = {!r}'.format(short.spec)) >>> print('long.spec = {!r}'.format(long.spec)) >>> print('numels = {!r}'.format(numels)) self.spec = 'b|a|a.0|a.1|a.2|a.5|c|a.8|a.9|b.0:3|c.0' short.spec = 'b|a|a:3|a.5|c|a.8:10|b:3|c.0' long.spec = 'b|a|a.0|a.1|a.2|a.5|c|a.8|a.9|b.0|b.1|b.2|c.0' numels = [13, 13, 13] >>> assert long.concise().spec == short.spec
- normalize()[source]¶
Replace aliases with explicit single-band-per-code specs
- Returns
normalize spec
- Return type
Example
>>> from delayed_image.channel_spec import * # NOQA >>> self = FusedChannelSpec.coerce('b1|b2|b3|rgb') >>> normed = self.normalize() >>> print('self = {}'.format(self)) >>> print('normed = {}'.format(normed)) self = <FusedChannelSpec(b1|b2|b3|rgb)> normed = <FusedChannelSpec(b1|b2|b3|r|g|b)> >>> self = FusedChannelSpec.coerce('B:1:11') >>> normed = self.normalize() >>> print('self = {}'.format(self)) >>> print('normed = {}'.format(normed)) self = <FusedChannelSpec(B:1:11)> normed = <FusedChannelSpec(B.1|B.2|B.3|B.4|B.5|B.6|B.7|B.8|B.9|B.10)> >>> self = FusedChannelSpec.coerce('B.1:11') >>> normed = self.normalize() >>> print('self = {}'.format(self)) >>> print('normed = {}'.format(normed)) self = <FusedChannelSpec(B.1:11)> normed = <FusedChannelSpec(B.1|B.2|B.3|B.4|B.5|B.6|B.7|B.8|B.9|B.10)>
- sizes()[source]¶
Returns a list indicating the size of each atomic code
- Returns
List[int]
Example
>>> from delayed_image.channel_spec import * # NOQA >>> self = FusedChannelSpec.coerce('b1|Z:3|b2|b3|rgb') >>> self.sizes() [1, 3, 1, 1, 3] >>> assert(FusedChannelSpec.parse('a.0').numel()) == 1 >>> assert(FusedChannelSpec.parse('a:0').numel()) == 0 >>> assert(FusedChannelSpec.parse('a:1').numel()) == 1
- to_set()¶
- to_oset()¶
- to_list()¶
- as_path()[source]¶
Returns a string suitable for use in a path.
Note, this may no longer be a valid channel spec
Example
>>> from delayed_image.channel_spec import * # NOQA >>> self = FusedChannelSpec.coerce('b1|Z:3|b2|b3|rgb') >>> self.as_path() b1_Z..3_b2_b3_rgb
- difference(other)[source]¶
Set difference
Example
>>> FCS = FusedChannelSpec.coerce >>> self = FCS('rgb|disparity|flowx|flowy') >>> other = FCS('r|b') >>> self.difference(other) >>> other = FCS('flowx') >>> self.difference(other) >>> FCS = FusedChannelSpec.coerce >>> assert len((FCS('a') - {'a'}).parsed) == 0 >>> assert len((FCS('a.0:3') - {'a.0'}).parsed) == 2
- intersection(other)[source]¶
Example
>>> FCS = FusedChannelSpec.coerce >>> self = FCS('rgb|disparity|flowx|flowy') >>> other = FCS('r|b|XX') >>> self.intersection(other)
- union(other)[source]¶
Example
>>> from delayed_image.channel_spec import * # NOQA >>> FCS = FusedChannelSpec.coerce >>> self = FCS('rgb|disparity|flowx|flowy') >>> other = FCS('r|b|XX') >>> self.union(other)
- component_indices(axis=2)[source]¶
Look up component indices within this stream
Example
>>> FCS = FusedChannelSpec.coerce >>> self = FCS('disparity|rgb|flowx|flowy') >>> component_indices = self.component_indices() >>> print('component_indices = {}'.format(ub.urepr(component_indices, nl=1, _dict_sort_behavior='old'))) component_indices = { 'disparity': (slice(...), slice(...), slice(0, 1, None)), 'flowx': (slice(...), slice(...), slice(4, 5, None)), 'flowy': (slice(...), slice(...), slice(5, 6, None)), 'rgb': (slice(...), slice(...), slice(1, 4, None)), }
- streams()[source]¶
Idempotence with
ChannelSpec.streams()
- fuse()[source]¶
Idempotence with
ChannelSpec.streams()
- class kwcoco.SensorChanSpec(spec: str)[source]¶
Bases:
NiceRepr
The public facing API for the sensor / channel specification
Example
>>> # xdoctest: +REQUIRES(module:lark) >>> from delayed_image.sensorchan_spec import SensorChanSpec >>> self = SensorChanSpec('(L8,S2):BGR,WV:BGR,S2:nir,L8:land.0:4') >>> s1 = self.normalize() >>> s2 = self.concise() >>> streams = self.streams() >>> print(s1) >>> print(s2) >>> print('streams = {}'.format(ub.urepr(streams, sv=1, nl=1))) L8:BGR,S2:BGR,WV:BGR,S2:nir,L8:land.0|land.1|land.2|land.3 (L8,S2,WV):BGR,L8:land:4,S2:nir streams = [ L8:BGR, S2:BGR, WV:BGR, S2:nir, L8:land.0|land.1|land.2|land.3, ]
Example
>>> # Check with generic sensors >>> # xdoctest: +REQUIRES(module:lark) >>> from delayed_image.sensorchan_spec import SensorChanSpec >>> import delayed_image >>> self = SensorChanSpec('(*):BGR,*:BGR,*:nir,*:land.0:4') >>> self.concise().normalize() >>> s1 = self.normalize() >>> s2 = self.concise() >>> print(s1) >>> print(s2) *:BGR,*:BGR,*:nir,*:land.0|land.1|land.2|land.3 (*):BGR,*:(nir,land:4) >>> import delayed_image >>> c = delayed_image.ChannelSpec.coerce('BGR,BGR,nir,land.0:8') >>> c1 = c.normalize() >>> c2 = c.concise() >>> print(c1) >>> print(c2)
Example
>>> # Check empty channels >>> # xdoctest: +REQUIRES(module:lark) >>> from delayed_image.sensorchan_spec import SensorChanSpec >>> import delayed_image >>> print(SensorChanSpec('*:').normalize()) *: >>> print(SensorChanSpec('sen:').normalize()) sen: >>> print(SensorChanSpec('sen:').normalize().concise()) sen: >>> print(SensorChanSpec('sen:').concise().normalize().concise()) sen:
- classmethod coerce(data)[source]¶
Attempt to interpret the data as a channel specification
- Returns
SensorChanSpec
Example
>>> # xdoctest: +REQUIRES(module:lark) >>> from delayed_image.sensorchan_spec import * # NOQA >>> from delayed_image.sensorchan_spec import SensorChanSpec >>> data = SensorChanSpec.coerce(3) >>> assert SensorChanSpec.coerce(data).normalize().spec == '*:u0|u1|u2' >>> data = SensorChanSpec.coerce(3) >>> assert data.spec == 'u0|u1|u2' >>> assert SensorChanSpec.coerce(data).spec == 'u0|u1|u2' >>> data = SensorChanSpec.coerce('u:3') >>> assert data.normalize().spec == '*:u.0|u.1|u.2'
- concise()[source]¶
Example
>>> # xdoctest: +REQUIRES(module:lark) >>> from delayed_image import SensorChanSpec >>> a = SensorChanSpec.coerce('Cam1:(red,blue)') >>> b = SensorChanSpec.coerce('Cam2:(blue,green)') >>> c = (a + b).concise() >>> print(c) (Cam1,Cam2):blue,Cam1:red,Cam2:green >>> # Note the importance of parenthesis in the previous example >>> # otherwise channels will be assigned to `*` the generic sensor. >>> a = SensorChanSpec.coerce('Cam1:red,blue') >>> b = SensorChanSpec.coerce('Cam2:blue,green') >>> c = (a + b).concise() >>> print(c) (*,Cam2):blue,*:green,Cam1:red
- streams()[source]¶
- Returns
List of sensor-names and fused channel specs
- Return type
List[FusedSensorChanSpec]
- late_fuse(*others)[source]¶
Example
>>> # xdoctest: +REQUIRES(module:lark) >>> import delayed_image >>> from delayed_image import sensorchan_spec >>> import delayed_image >>> delayed_image.SensorChanSpec = sensorchan_spec.SensorChanSpec # hack for 3.6 >>> a = delayed_image.SensorChanSpec.coerce('A|B|C,edf') >>> b = delayed_image.SensorChanSpec.coerce('A12') >>> c = delayed_image.SensorChanSpec.coerce('') >>> d = delayed_image.SensorChanSpec.coerce('rgb') >>> print(a.late_fuse(b).spec) >>> print((a + b).spec) >>> print((b + a).spec) >>> print((a + b + c).spec) >>> print(sum([a, b, c, d]).spec) A|B|C,edf,A12 A|B|C,edf,A12 A12,A|B|C,edf A|B|C,edf,A12 A|B|C,edf,A12,rgb >>> import delayed_image >>> a = delayed_image.SensorChanSpec.coerce('A|B|C,edf').normalize() >>> b = delayed_image.SensorChanSpec.coerce('A12').normalize() >>> c = delayed_image.SensorChanSpec.coerce('').normalize() >>> d = delayed_image.SensorChanSpec.coerce('rgb').normalize() >>> print(a.late_fuse(b).spec) >>> print((a + b).spec) >>> print((b + a).spec) >>> print((a + b + c).spec) >>> print(sum([a, b, c, d]).spec) *:A|B|C,*:edf,*:A12 *:A|B|C,*:edf,*:A12 *:A12,*:A|B|C,*:edf *:A|B|C,*:edf,*:A12,*: *:A|B|C,*:edf,*:A12,*:,*:rgb >>> print((a.late_fuse(b)).concise()) >>> print(((a + b)).concise()) >>> print(((b + a)).concise()) >>> print(((a + b + c)).concise()) >>> print((sum([a, b, c, d])).concise()) *:(A|B|C,edf,A12) *:(A|B|C,edf,A12) *:(A12,A|B|C,edf) *:(A|B|C,edf,A12,) *:(A|B|C,edf,A12,,r|g|b)
Example
>>> # Test multi-arg case >>> import delayed_image >>> a = delayed_image.SensorChanSpec.coerce('A|B|C,edf') >>> b = delayed_image.SensorChanSpec.coerce('A12') >>> c = delayed_image.SensorChanSpec.coerce('') >>> d = delayed_image.SensorChanSpec.coerce('rgb') >>> others = [b, c, d] >>> print(a.late_fuse(*others).spec) >>> print(delayed_image.SensorChanSpec.late_fuse(a, b, c, d).spec) A|B|C,edf,A12,rgb A|B|C,edf,A12,rgb
- matching_sensor(sensor)[source]¶
Get the components corresponding to a specific sensor
- Parameters
sensor (str) – the name of the sensor to match
Example
>>> # xdoctest: +REQUIRES(module:lark) >>> import delayed_image >>> self = delayed_image.SensorChanSpec.coerce('(S1,S2):(a|b|c),S2:c|d|e') >>> sensor = 'S2' >>> new = self.matching_sensor(sensor) >>> print(f'new={new}') new=S2:a|b|c,S2:c|d|e >>> print(self.matching_sensor('S1')) S1:a|b|c >>> print(self.matching_sensor('S3')) S3:
- property chans¶
Returns the channel-only spec, ONLY if all of the sensors are the same
Example
>>> # xdoctest: +REQUIRES(module:lark) >>> import delayed_image >>> self = delayed_image.SensorChanSpec.coerce('(S1,S2):(a|b|c),S2:c|d|e') >>> import pytest >>> with pytest.raises(Exception): >>> self.chans >>> print(self.matching_sensor('S1').chans.spec) >>> print(self.matching_sensor('S2').chans.spec) a|b|c a|b|c,c|d|e