kwcoco.metrics.clf_report module

kwcoco.metrics.clf_report.classification_report(y_true, y_pred, target_names=None, sample_weight=None, verbose=False)[source]

Computes a classification report which is a collection of various metrics commonly used to evaulate classification quality. This can handle binary and multiclass settings.

Note that this function does not accept probabilities or scores and must instead act on final decisions. See ovr_classification_report for a probability based report function using a one-vs-rest strategy.

This emulates the bm(cm) Matlab script written by David Powers that is used for computing bookmaker, markedness, and various other scores.

References

https://csem.flinders.edu.au/research/techreps/SIE07001.pdf https://www.mathworks.com/matlabcentral/fileexchange/5648-bm-cm-?requestedDomain=www.mathworks.com Jurman, Riccadonna, Furlanello, (2012). A Comparison of MCC and CEN

Error Measures in MultiClass Prediction

Example

>>> # xdoctest: +IGNORE_WANT
>>> # xdoctest: +REQUIRES(module:sklearn)
>>> y_true = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3]
>>> y_pred = [1, 2, 1, 3, 1, 2, 2, 3, 2, 2, 3, 3, 2, 3, 3, 3, 1, 3]
>>> target_names = None
>>> sample_weight = None
>>> report = classification_report(y_true, y_pred, verbose=0)
>>> print(report['confusion'])
pred  1  2  3  Σr
real
1     3  1  1   5
2     0  4  1   5
3     1  1  6   8
Σp    4  6  8  18
>>> print(report['metrics'])
metric    precision  recall    fpr  markedness  bookmaker    mcc  support
class
1            0.7500  0.6000 0.0769      0.6071     0.5231 0.5635        5
2            0.6667  0.8000 0.1538      0.5833     0.6462 0.6139        5
3            0.7500  0.7500 0.2000      0.5500     0.5500 0.5500        8
combined     0.7269  0.7222 0.1530      0.5751     0.5761 0.5758       18
Ignore:
>>> size = 100
>>> rng = np.random.RandomState(0)
>>> p_classes = np.array([.90, .05, .05][0:2])
>>> p_classes = p_classes / p_classes.sum()
>>> p_wrong   = np.array([.03, .01, .02][0:2])
>>> y_true = testdata_ytrue(p_classes, p_wrong, size, rng)
>>> rs = []
>>> for x in range(17):
>>>     p_wrong += .05
>>>     y_pred = testdata_ypred(y_true, p_wrong, rng)
>>>     report = classification_report(y_true, y_pred, verbose='hack')
>>>     rs.append(report)
>>> # xdoctest: +REQUIRES(--show)
>>> import kwplot
>>> kwplot.autompl()
>>> import pandas as pd
>>> df = pd.DataFrame(rs).drop(['raw'], axis=1)
>>> delta = df.subtract(df['target'], axis=0)
>>> sqrd_error = np.sqrt((delta ** 2).sum(axis=0))
>>> print('Error')
>>> print(sqrd_error.sort_values())
>>> ys = df.to_dict(orient='list')
>>> kwplot.multi_plot(ydata_list=ys)
kwcoco.metrics.clf_report.ovr_classification_report(mc_y_true, mc_probs, target_names=None, sample_weight=None, metrics=None)[source]

One-vs-rest classification report

Parameters:
  • mc_y_true – multiclass truth labels (integer label format)
  • mc_probs – multiclass probabilities for each class [N x C]

Example

>>> # xdoctest: +IGNORE_WANT
>>> # xdoctest: +REQUIRES(module:sklearn)
>>> from kwcoco.metrics.clf_report import *  # NOQA
>>> y_true = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0]
>>> y_probs = np.random.rand(len(y_true), max(y_true) + 1)
>>> target_names = None
>>> sample_weight = None
>>> verbose = True
>>> report = ovr_classification_report(y_true, y_probs)
>>> print(report['ave'])
auc     0.6541
ap      0.6824
kappa   0.0963
mcc     0.1002
brier   0.2214
dtype: float64
>>> print(report['ovr'])
     auc     ap  kappa    mcc  brier  support  weight
0 0.6062 0.6161 0.0526 0.0598 0.2608        8  0.4444
1 0.5846 0.6014 0.0000 0.0000 0.2195        5  0.2778
2 0.8000 0.8693 0.2623 0.2652 0.1602        5  0.2778
Ignore:
>>> y_true = [1, 1, 1]
>>> y_probs = np.random.rand(len(y_true), 3)
>>> target_names = None
>>> sample_weight = None
>>> verbose = True
>>> report = ovr_classification_report(y_true, y_probs)
>>> print(report['ovr'])